Arithmetic sequences:	Not arithmetic sequences:
$1,-2,-5,-8, \ldots$	$16,-2,-6,-11, \ldots$
$16,14,12,10, \ldots$	$6,16,11,2, \ldots$
$6,16,26,36, \ldots$	

Define what it means to be an arithmetic sequence in your own words. Give an example.

Geometric sequences:
$1,2,4,8, \ldots$
$100,50,25,12.5, \ldots$
$3,-12,48,-192, \ldots$
$\frac{2}{3}, \frac{4}{9}, \frac{8}{27}, \frac{16}{81}, \ldots$

Not geometric sequences:
$1,2,6,24, \ldots$
$600,300,100,25, \ldots$
$3,-12,60,-360, \ldots$
$\frac{1}{2}, 1, \frac{3}{2}, 2, \frac{5}{2}, \ldots$

Define what it means to be a geometric sequence in your own words. Give an example.

Definition: Arithmetic Sequence (Alg 2 Review)

When the difference between successive terms is always the same. This difference is called the common difference, and is denoted by the letter \boldsymbol{d}.

Formula for $\boldsymbol{n t h}$ Term of an Arithmetic Sequence

$$
\begin{gathered}
a_{\mathrm{n}}=a+(n-1) d \quad \text { or } \quad a_{\mathrm{n}}=a+d(n-1) \\
\text { where } a=a_{1}
\end{gathered}
$$

Example 1: Find the $13^{\text {th }}$ term of the sequence: $2,6,10,14, \ldots$
Step 1
Determine a_{1} and \boldsymbol{d}

$$
\mathrm{a}_{1}=2 \quad d=4
$$

Step 2 Write formula, substitute in values, and simplify

$$
\begin{aligned}
& a_{\mathrm{n}}=a+d(n-1) \\
& a_{\mathrm{n}}=2+4(n-1) \\
& a_{13}=2+4(13-1) \\
& a_{13}=50
\end{aligned}
$$

$$
a_{\mathrm{n}}=2+4(n-1) \quad \rightarrow \text { This is the general formula }
$$

Finding Terms Using your Calculator

If you are given a formula for a sequence, you can use the calculator to help you find any term. Let's use the example from before: $a_{\mathrm{n}}=2+4(n-1)$, find the thirteenth term $\left(\mathrm{a}_{13}\right)$.

Step 1
Step 2
Put formula in $\mathrm{Y}=$
Use ' x ' in place of ' n '

Look in TABLE at $x=13$

Finding a Recursive Formula for an Arithmetic Sequence
Given: the $8^{\text {th }}$ term of an arithmetic sequence is 75 , and the $20^{\text {th }}$ term is 39 . Find the recursive formula.

Find: a) the first term and common difference
b) the nth term of the sequence
(a) Here's what we find first:

$$
\begin{array}{ll}
a_{\mathrm{n}}=a+d(n-1) & a_{\mathrm{n}}=a+d(n-1) \\
a_{8}=a+d(8-1) & a_{20}=a+d(20-1) \\
75=a+d(8-1) & 39=a+d(20-1) \\
75=\mathrm{a}+7 \mathrm{~d} & 39=\mathrm{a}+19 \mathrm{~d}
\end{array}
$$

Now, we have a system of two linear equations:

$$
\begin{aligned}
& 75=a+7 d \\
& 39=a+19 d \\
& 36=-12 d \\
& -3=d
\end{aligned}
$$

Equation 1
Equation 2
$36=-12 d \quad$ Equation $1-$ Equation 2

Common difference

To find the first term...we have to use d and one of the equations!

$$
\begin{array}{lll}
a_{8}=a+7 d & & a_{20}=\mathrm{a}+19 \mathrm{~d} \\
75=\mathrm{a}+7(-3) & \text { OR } & 39=\mathrm{a}+19(-3) \\
75=\mathrm{a}-21 & & 39=\mathrm{a}-57 \\
96=\mathrm{a} & 96=\mathrm{a}
\end{array}
$$

(b) Since we have our first term, and a common difference, we can now use our formula and apply what we know:

$$
\begin{aligned}
& a_{\mathrm{n}}=a+d(n-1) \\
& a_{\mathrm{n}}=96+(-3)(n-1) \\
& a_{\mathrm{n}}=99-3 n
\end{aligned}
$$

Sum of \boldsymbol{n} terms of an Arithmetic Sequence

Let $\left\{a_{\mathrm{n}}\right\}$ be an arithmetic sequence with first term $a_{1}=a$ and common difference \boldsymbol{d}. The sum $\boldsymbol{S}_{\mathbf{n}}$ of the first n terms of $\left\{a_{\mathrm{n}}\right\}$ is

$$
S_{n}=\frac{n}{2}(2 a+d(n-1))=\frac{n}{2}\left(a+a_{n}\right)
$$

Example 2: Find the sum \boldsymbol{S}_{n} of the first n terms of $\{3 n+5\}$.
This is asking us to find a general formula for the sum...
Solution:

$$
\begin{array}{ll}
\text { First few terms } \rightarrow & 3(1)+5=8 \\
& 3(2)+5=11 \\
3(3)+5=14
\end{array}
$$

So, we have the sum

$$
8+11+14+\ldots+(3 n+5)
$$

Now, if all we wanted was the sum of the first 20 terms, we only need to plug in...

$$
\begin{aligned}
& S_{n}=\frac{n}{2}(3 n+13) \\
& S_{20}=\frac{20}{2}(3(20)+13) \\
& S_{20}=10(60+13)=730
\end{aligned}
$$

Finding the Sum for an Arithmetic Sequence

If you are given a formula for a sequence, you can use the calculator to help you find sum for a given number of terms. Let's use the example from before: Find S_{20} for $\{3 \mathrm{n}+5\}$.

Technique \#1: TI 83 or TI84 Family

MODE

$2^{\text {nd }}$ LIST

> Type in (expression, variable, beginning term, ending term, increment)

Technique \#2 for TI84 Family ONLY:
ALPHA WINDOW $2: \sum$ Type in information

nth Term of a Geometric Sequence

Let $\left\{a_{\mathrm{n}}\right\}$ be a geometric sequence with first term $a_{1}=a$ and whose common ratio r, the nth term is determined by the formula

$$
a_{n}=a r^{n-1}, r \neq 0
$$

Example 3: Find the ninth term of the geometric sequence

$$
10,9, \frac{81}{10}, \frac{729}{100}, \ldots
$$

Solution: Determine the values for a and $r \ldots$

$$
\begin{aligned}
& a=10 \text { and } r=\frac{9}{10} \\
& a_{9}=10\left(\frac{9}{10}\right)^{9-1} \\
& a_{9}=4.3046721
\end{aligned}
$$

Sum of \boldsymbol{n} terms of a Geometric Sequence

Let $\left\{a_{\mathrm{n}}\right\}$ be a geometric sequence with first term $a_{1}=a$ and common ratio r. The sum $S_{\mathbf{n}}$ of the first n terms of $\left\{a_{\mathrm{n}}\right\}$ is

$$
S_{n}=\frac{a\left(1-r^{n}\right)}{1-r}, r \neq 0,1
$$

Example 4: Find the sum \boldsymbol{S}_{n} of the first n terms of $\left\{\left(\frac{1}{2}\right)^{n}\right\}$.
Solution: First few terms $\rightarrow \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \ldots$
Common ratio: $\frac{1}{2} \quad$ General term $\rightarrow\left(\frac{1}{2}\right)^{n}$
$S_{n}=\sum_{k=1}^{n}\left(\frac{1}{2}\right)^{k}=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\ldots+\left(\frac{1}{2}\right)^{n}$
$S_{n}=\sum_{k=1}^{n}\left(\frac{1}{2}\right)^{k}=\frac{\frac{1}{2}\left[1-\left(\frac{1}{2}\right)^{n}\right]}{1-\frac{1}{2}}=\frac{\frac{1}{2}\left[1-\left(\frac{1}{2}\right)^{n}\right]}{\frac{1}{2}}=1-\left(\frac{1}{2}\right)^{n}$

Sum of an Infinite Geometric Sequence

If $|r|<1$, the sum of the infinite geometric series is

$$
\sum_{k=1}^{\infty} a r^{k-1}=\frac{a}{1-r}
$$

Example 5: Show that the repeating decimal 0.999... $=1$
Solution:

$$
\begin{aligned}
& 0.999 \ldots=0.9+0.09+0.009+0.0009+\ldots \\
& 0.999 \ldots=\frac{9}{10}+\frac{9}{100}+\frac{9}{1000}+\ldots
\end{aligned}
$$

The first term is a $=9 / 10$, and the common ratio is $1 / 10$

$$
0.999 \ldots=\frac{\frac{9}{10}}{1-\frac{1}{10}}=\frac{\frac{9}{10}}{\frac{9}{10}}=1
$$

Example 6: Find the sum of the geometric series below:

$$
2+\frac{4}{3}+\frac{8}{9}+\ldots
$$

Solution: First term is $\mathrm{a}=2$, and the common ratio is

$$
r=\frac{\frac{4}{3}}{2}=\frac{4}{3} \cdot \frac{1}{2}=\frac{2}{3}
$$

Be sure to check that $|r|<1$!! Since $|r|=\frac{2}{3}<1$, we can use the formula from above.

$$
\begin{aligned}
& \sum_{k=1}^{\infty} a r^{k-1}=\frac{a}{1-r} \quad \begin{array}{l}
\text { (1) Write down your } \\
\text { formula!! }
\end{array} \\
& \sum_{k=1}^{\infty} 2\left(\frac{2}{3}\right)^{k-1}=\frac{2}{1-\frac{2}{3}}=\frac{2}{\frac{3}{3}-\frac{2}{3}}=\frac{2}{\frac{1}{3}}=6 \quad \begin{array}{l}
\text { (2) Sub } \\
\text { and } \\
\text { simplify }
\end{array} \\
& 2+\frac{4}{3}+\frac{8}{9}+\ldots=6 \quad \begin{array}{l}
\text { (3) Write solution like } \\
\text { this...don't just put ' } 6 \text { ' }
\end{array}
\end{aligned}
$$

You've Got Problems!
Pg. 798 \#13, 15, 17, $21-41$ (eoo)
Pg. 808 \#9, 11, 19, 21, 25, 29, 59, 61
Write one formula sheet that contains all of the formulas in these sections.

