Arithmetic sequences:	Not arithmetic sequences:
$1, -2, -5, -8, \dots$	$\overline{1, -2, -6, -11, \ldots}$
16, 14, 12, 10,	16, 14, 10, 2,
6, 16, 26, 36,	6, 16, 11, 21, 16, 26, 21,

Define what it means to be an arithmetic sequence in your own words. Give an example.

Geometric sequences:	Not geometric sequences:
1, 2, 4, 8,	1, 2, 6, 24,
100, 50, 25, 12.5,	600, 300, 100, 25,
3, -12, 48, -192,	3, -12, 60, -360,
$\frac{2}{3}, \frac{4}{9}, \frac{8}{27}, \frac{16}{81}, \dots$	$\frac{1}{2}$, 1, $\frac{3}{2}$, 2, $\frac{5}{2}$,

Define what it means to be a geometric sequence in your own words. Give an example.

Definition: Arithmetic Sequence (Alg 2 Review)

When the difference between successive terms is always the same. This difference is called the *common difference*, and is denoted by the letter *d*.

Formula for *nth* Term of an Arithmetic Sequence

$$a_n = a + (n-1)d$$
 or $a_n = a + d(n-1)$

where $a = a_1$

Example 1: Find the 13th term of the sequence: 2, 6, 10, 14, ...

Step 1 Determine a_1 and d $a_1 = 2$ d = 4

Step 2 Write formula, substitute in values, and simplify $a_n = a + d(n-1)$ $a_n = 2 + 4(n-1)$ \rightarrow This is the general formula $a_{13} = 2 + 4(13 - 1)$ $a_{13} = 50$

Finding Terms Using your Calculator

If you are given a formula for a sequence, you can use the calculator to help you find any term. Let's use the example from before: $a_n = 2 + 4(n - 1)$, find the thirteenth term (a_{13}).

Finding a Recursive Formula for an Arithmetic Sequence

- Given: the 8^{th} term of an arithmetic sequence is 75, and the 20^{th} term is 39. Find the recursive formula.
- Find: a) the first term and common differenceb) the nth term of the sequence
 - (a) Here's what we find first:

$$a_n = a + d(n-1)$$
 $a_n = a + d(n-1)$ $a_8 = a + d(8-1)$ $a_{20} = a + d(20-1)$ $75 = a + d(8-1)$ $39 = a + d(20-1)$ $75 = a + 7d$ $39 = a + 19d$

Dan Muscarella, 2011

Now, we have a system of two linear equations:

$$75 = a + 7d$$
Equation 1 $39 = a + 19d$ Equation 2 $36 = -12d$ Equation 1 - Equation 2 $-3 = d$ Common difference

To find the first term...we have to use d and one of the equations!

- $a_8 = a + 7d$ $a_{20} = a + 19d$ 75 = a + 7(-3)OR39 = a + 19(-3)75 = a 2139 = a 5796 = a96 = a
- (b) Since we have our first term, and a common difference, we can now use our formula and apply what we know:

$$a_n = a + d(n-1)$$

 $a_n = 96 + (-3) (n-1)$
 $a_n = 99 - 3n$

Sum of *n* terms of an Arithmetic Sequence

Let $\{a_n\}$ be an arithmetic sequence with first term $a_1 = a$ and **common difference** *d*. The sum S_n of the first *n* terms of $\{a_n\}$ is

$$S_n = \frac{n}{2} \left(2a + d(n-1) \right) = \frac{n}{2} \left(a + a_n \right)$$

Example 2: Find the sum S_n of the first *n* terms of $\{3n + 5\}$.

This is asking us to *find a general formula* for the sum...

Solution: First few terms
$$\rightarrow$$

 $3(1) + 5 = 8$
 $3(2) + 5 = 11$
 $3(3) + 5 = 14$
Common difference: $3 \quad a_1 = 8 \quad a_n \rightarrow 3n + 5$
So, we have the sum
 $8 + 11 + 14 + \dots + (3n + 5)$
 $S_n = \frac{n}{2}(a + a_n)$
(1) Write down formula
 $S_n = \frac{n}{2}(8 + (3n + 5))$
(2) Substitute values
 $S_n = \frac{n}{2}(3n + 13)$
(3) This is our solution!

Now, if all we wanted was the sum of the first 20 terms, we only need to plug in...

$$S_{n} = \frac{n}{2} (3n+13)$$
$$S_{20} = \frac{20}{2} (3(20)+13)$$
$$S_{20} = 10(60+13) = 730$$

Dan Muscarella, 2011

Finding the Sum for an Arithmetic Sequence

If you are given a formula for a sequence, you can use the calculator to help you find sum for a given number of terms. Let's use the example from before: Find S_{20} for $\{3n + 5\}$.

Technique #1: TI 83 or TI84 Family

MODE

2nd LIST

2nd LIST

NAMES	, OPS	NH H
l:min'	Ş	
Z∶max'	()	
ې mear	ېر ¢	
4 med:	jan(
ju sum (
5:Pro(ac 🔪	
7∔stal	Jeve	

NAMES **Die** MATH 1:SortA(2:SortD(3:dim(4:Fill(6:cumSum(7↓⊿List(

Type in (expression, variable, beginning term, ending term, increment)

Technique #2 for TI84 Family ONLY:

ALPHA WINDOW $2: \sum ($

Dan Muscarella, 2011

Type in information

nth Term of a Geometric Sequence

Let $\{a_n\}$ be a geometric sequence with first term $a_1 = a$ and whose **common ratio** *r*, the nth term is determined by the formula

$$a_n = ar^{n-1}, r \neq 0$$

Example 3: Find the ninth term of the geometric sequence

$$10,9,\frac{81}{10},\frac{729}{100},\dots$$

Solution: Determine the values for *a* and *r*...

$$a = 10 \text{ and } r = \frac{9}{10}$$

 $a_9 = 10 \left(\frac{9}{10}\right)^{9-1}$

$$a_9 = 4.3046721$$

Sum of *n* terms of a Geometric Sequence

Let $\{a_n\}$ be a geometric sequence with first term $a_1 = a$ and **common ratio** *r*. The sum S_n of the first *n* terms of $\{a_n\}$ is

$$S_n = \frac{a(1-r^n)}{1-r}, \ r \neq 0,1$$

Example 4: Find the sum S_n of the first *n* terms of $\left\{ \left(\frac{1}{2}\right)^n \right\}$. First few terms $\rightarrow \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \dots$ **Solution:** Common ratio: $\frac{1}{2}$ General term $\rightarrow \left(\frac{1}{2}\right)^n$ $S_{n} = \sum_{k=1}^{n} \left(\frac{1}{2}\right)^{k} = \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots + \left(\frac{1}{2}\right)^{n}$ $S_{n} = \sum_{k=1}^{n} \left(\frac{1}{2}\right)^{k} = \frac{\frac{1}{2} \left[1 - \left(\frac{1}{2}\right)^{n}\right]}{1 - \frac{1}{2}} = \frac{\frac{1}{2} \left[1 - \left(\frac{1}{2}\right)^{n}\right]}{\frac{1}{2}} = 1 - \left(\frac{1}{2}\right)^{n}$

Example 5: Show that the repeating decimal 0.999...= 1

Solution:

$$0.999... = 0.9 + 0.09 + 0.009 + 0.0009 + ...$$
$$0.999... = \frac{9}{10} + \frac{9}{100} + \frac{9}{1000} + ...$$

The first term is a = 9/10, and the common ratio is 1/10

$$0.999... = \frac{\frac{9}{10}}{1 - \frac{1}{10}} = \frac{\frac{9}{10}}{\frac{9}{10}} = 1$$

Example 6: Find the sum of the geometric series below:

$$2 + \frac{4}{3} + \frac{8}{9} + \dots$$

Solution: First term is a = 2, and the common ratio is

$$r = \frac{\frac{4}{3}}{2} = \frac{4}{3} \cdot \frac{1}{2} = \frac{2}{3}$$

Be sure to check that |r| < 1 !! Since $|r| = \frac{2}{3} < 1$, we can use the formula from above.

<u>You've Got Problems!</u> Pg. 798 #13, 15, 17, 21 – 41 (eoo) Pg. 808 #9, 11, 19, 21, 25, 29, 59, 61 Write one formula sheet that contains all

of the formulas in these sections.