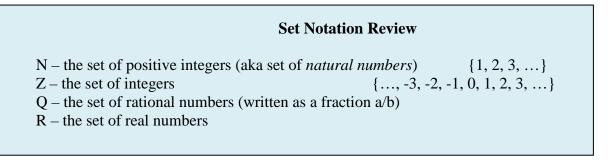
Before we delve into the today's topic, let's review some basic set notation...

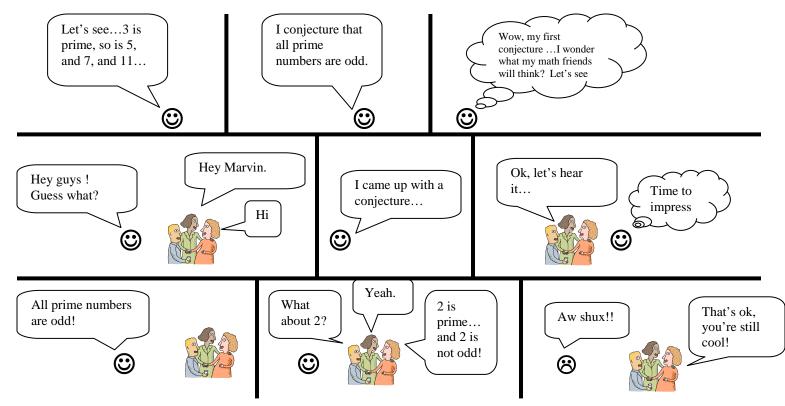


Notice how all sets are denoted by *CAPITAL LETTERS*. This is because lower case letters were already reserved for use by variables. Cool fact, huh?

Many important results in mathematics have been discovered by observing patterns in some specific cases and then by making generalizations from the observations.

 \rightarrow This is called Applying INDUCTIVE REASONING. Mathematicians would then use their deductive reasoning skills to come up with rules...in fact, they were called *conjectured rules* (pretty fancy)

Now, mathematicians would give example after example proving that their "conjectured rule" is TRUE. Nice as this is, your friends only need one counterexample to prove that your conjecture is NOT TRUE.



Induction Principle: mathematicians use this idea to prove properties with *Natural* numbers. It works like this...

THE PRINCIPAL OF MATHEMATICAL INDUCTION

Let P_n be a statement involving the positive integer n.

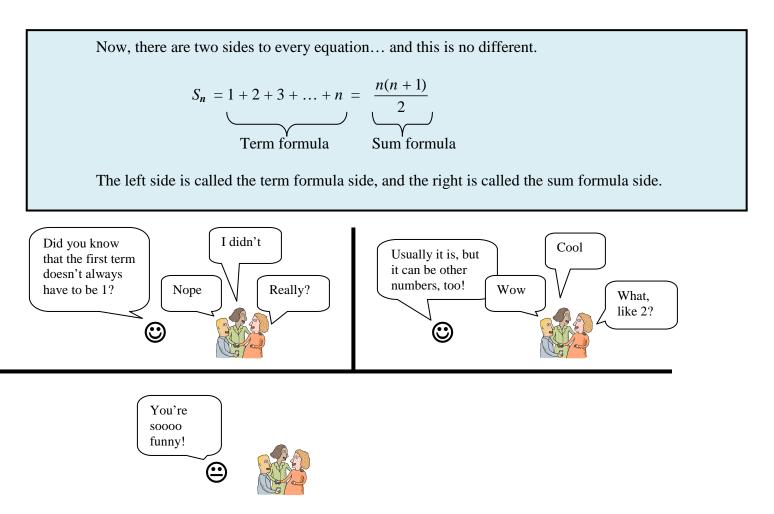
If

1. P_1 is true for the natural number 1 (some books write this as P(1), or simply 1) AND

2. The truth of P_k implies the truth of P_{k+1} , for every positive k,

then P_n must be true for all positive integers n.

BOTH PARTS ARE NECESSARY TO USE THE PRINCIPAL OF MATHEMATICAL INDUCTION



Term	Next term	Simplified version of next term
k	(k + 1)	k + 1
k + 3	(k + 1) + 3	k + 4
k-2	(k + 1) - 2	k – 1
2k + 3	2(k+1) + 3 $2^{(k+1)}$	2k + 5
2^{k}	$2^{(k+1)}$	2^{k+1}
2^{k+1}	$2^{(k+1)+1}$	2^{k+2}
2^{k-1}	$2^{(k+1)-1}$	2^k
$\frac{1}{k(k+1)}$	(k+1)((k+1)+1)	$(k + 1)(k + 2), \ \underline{or} \ k^2 + 3k + 2$
k^2	(k + 1)((k + 1) + 1) $(k + 1)^{2}$	$k^2 + 2k + 1$

Speaking of terms, let's review what the next term is for given situations where k represents an integer...

For geometric proofs, you needed *Statements* and *Reasons*. Mathematical Induction proofs need four parts:

- When n = 1,
- Assume P(k) is true for $k \ge 1$,
- Then, and
- Therefore.

EX 1] Use mathematical induction to prove the statement is true for all natural numbers *n*.

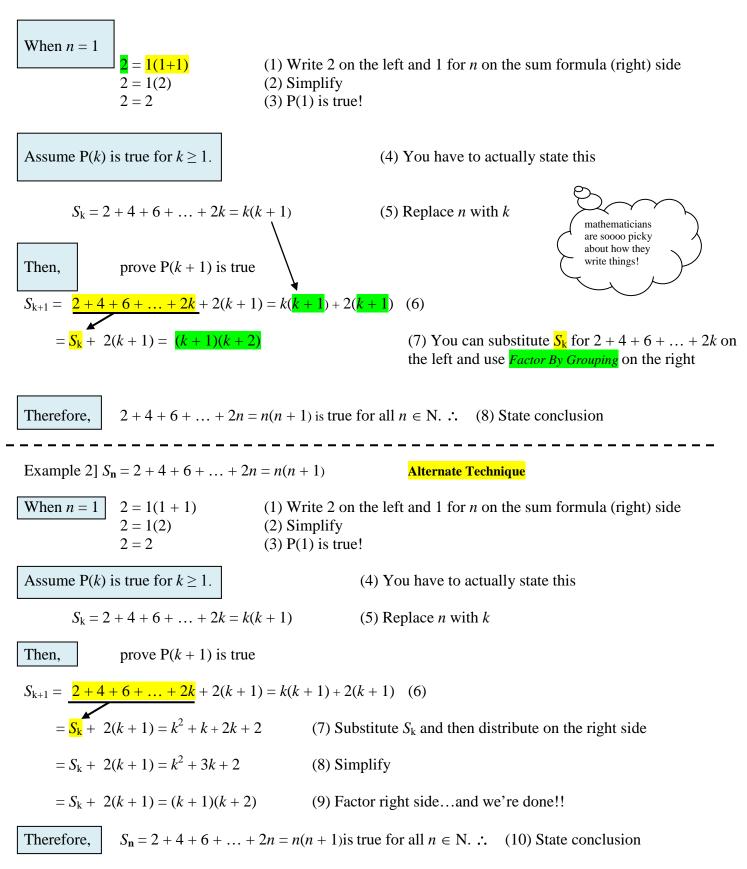
Then,

$$P(k + 1) = (k + 1) = \frac{k(k + 1)}{2}$$
Then,

$$P(k + 1) = k(k + 1) = (k + 1) =$$

Therefore, $1+2+3+\ldots+n = \frac{n(n+1)}{2}$ is true for all $n \in \mathbb{N}$. \therefore (11) State conclusion

EX 2] For this problem, we will look at two different approaches. Use mathematical induction to prove $P_n = 2 + 4 + 6 + ... + 2n = \frac{n(n+1)}{n(n+1)}$ is true for all natural numbers.



EX 3]

Use mathematical induction to prove $P_n = 3 + 7 + 11 + 15 + \dots + (4n - 1) = n(2n + 1)$ is true for all natural numbers.

(k+1)(2(k+1)+1) or (k+1)(2k+3)

Idea...when we get to the end of the THEN part... we want the right side to be in the form

When
$$n = 1$$

 $3 = 1(2(1)+1)$ (1) Write 3 on the left and 1 for n on the sum formula (right) side
 $3 = 1(3)$ (2) Simplify
 $3 = 3$ (3) P(1) is true!
Assume P(k) is true for $k \ge 1$.
 (4) You have to actually state this
 $S_k = 3 + 7 + 11 + 15 + ... + (4k - 1) = k(2k + 1)$ (5) Replace n with k
Then,
prove P(k + 1) is true
 $S_{k+1} = \frac{3 + 7 + 11 + 15 + ... + (4k - 1)}{4(k+3)} + (4(k+1) - 1) = k(2k + 1) + (4(k+1) - 1)$ (6)
 $= \frac{5}{8k} + (4k+3) = k(2k + 1) + (4k + 3)$ (7) Substitute $\frac{5}{8k}$ and then simplify
 $(4(k+1) - 1)$ to $(4k + 3)$
 $= S_k + (4k+3) = 2k^2 + k + 4k + 3$ (8)
 $= S_k + (4k+3) = 2k^2 + 5k + 3$ (9) Simplify
 $= S_k + (4k+3) = (k + 1)(2k + \frac{5}{3})$ (10) Factor
 $= S_k + (4k+3) = (k + 1)(2k + \frac{5}{3})$ (11) Split 3 into 2 + 1
 $= S_k + (4k+3) = (k + 1)(2(k + 1) + 1)$ (12)

Therefore,

3 + 7 + 11 + 15 + ... + (4n - 1) = n(2n + 1) is true for all $n \in \mathbb{N}$. \therefore (13) State conclusion

Sums of Powers of Integers:
•
$$\sum_{k=1}^{n} k = 1 + 2 + 3 + 4 + \dots + n = \frac{n(n+1)}{2}$$

• $\sum_{k=1}^{n} k^2 = 1^2 + 2^2 + 3^2 + 4^2 + \dots + n^2 = \frac{n(n+1)(2n+1)}{6}$
• $\sum_{k=1}^{n} k^3 = 1^3 + 2^3 + 3^3 + 4^3 + \dots + n^3 = \frac{n^2(n+1)^2}{4}$
• $\sum_{k=1}^{n} k^4 = 1^4 + 2^4 + 3^4 + 4^4 + \dots + n^4 = \frac{n(n+1)(2n+1)(3n^2 + 3n - 1)}{30}$
• $\sum_{k=1}^{n} k^5 = 1^5 + 2^5 + 3^5 + 4^5 + \dots + n^5 = \frac{n^2(n+1)^2(2n^2 + 2n - 1)}{12}$

EX 4] Find the sum using the formulas for the sums of powers of integers for $S_n = \sum_{n=1}^{5} n^4$

Solution: First, determine how many terms are in the sum ... $n = 1, 2, 3, 4, 5 \rightarrow$ We have **5** terms

$$S_{n} = \sum_{n=1}^{5} n^{4} = \frac{n(n+1)(2n+1)(3n^{2}+3n-1)}{30}$$
(1) Write sum formula for n^{4}

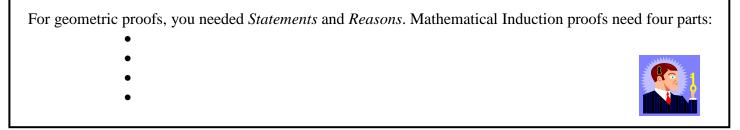
$$= \frac{5((5)+1)(2(5)+1)(3(5)^{2}+3(5)-1)}{30}$$
(2) Substitute **5** for **n**

$$= \frac{5(6)(10+1)(75+15-1)}{30}$$
(3) Simplify
$$= \frac{30(11)(89)}{30}$$
(4) Simplify
$$= 979$$
(5) Simplify

*Verify on your graphing calculator.

Name: ______ Block: 1 2 3 4 5 6 7 8

Date:

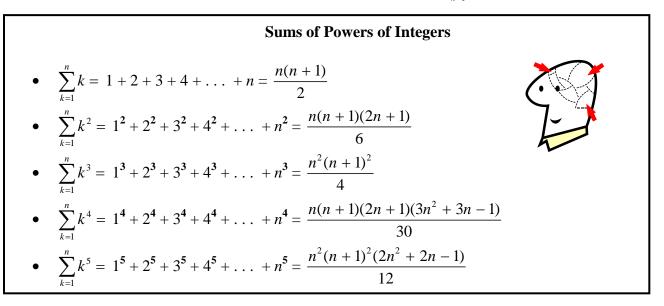


Use mathematical induction to prove the given statement is true for all natural numbers.

EX 1]
$$S_n = 1 + 2 + 3 + ... + n = \frac{n(n+1)}{2}$$
 EX 2] $S_n = 2 + 4 + 6 + ... + 2n = n(n+1)$

EX 3] $S_n = 3 + 7 + 11 + 15 + \dots + (4n - 1) = n(2n + 1)$

EX 4] Using the Sums of Powers of Integers formula, find the sum of $\sum_{k=1}^{3} k^4$.



HW Problems:

Use the Principal of Math Induction to prove that the given statement is true for all natural numbers, n.

1]
$$S_n = 1 + 4 + 7 + 10 + \dots + (3n - 2) = \frac{n}{2}(3n - 1)$$

2] $S_n = 1 + 2 + 2^2 + \dots + 2^{n-1} = 2^n - 1$
3] $S_n = 1^2 + 2^2 + 3^2 + \dots + n^2 = \frac{n(n+1)(2n+1)}{6}$
4] $S_n = 2 + 7 + 12 + \dots + (5n - 3) = \frac{n}{2}(5n - 1)$

Use the formulas for the sums of powers of integers find the sum of each.

5] $\sum_{k=1}^{6} k^2 - k$. 6] $\sum_{i=1}^{6} 6i^2 - 8i^3$ [#5 and #6 HINT: use 2 formulas!]

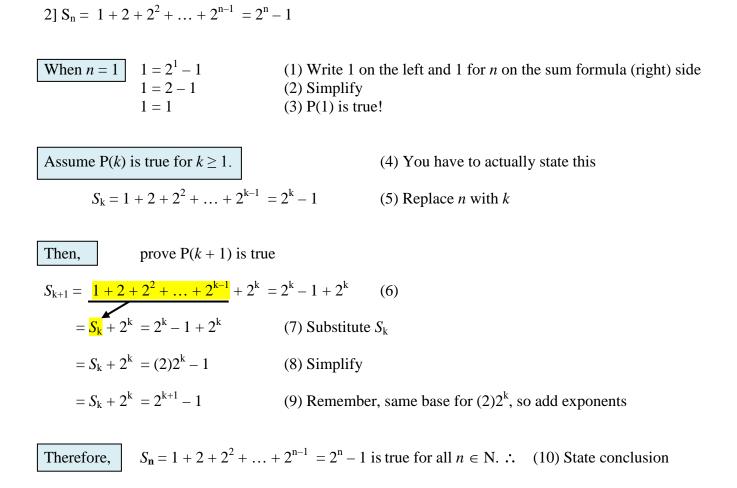
Math Induction

HW Problems Key:

1] $S_n = 1 + 4 + 7 + 10 + + (3n - 2) = \frac{n}{2}(3n - 1)$					
When $n = 1$ $1 = \frac{1}{2}(3(1) - 1)$		(1) Write 1 on the left and 1 for <i>n</i> on the sum formula (right) side			
	$1 = \frac{1}{2}(2)$	(2) Simplify			
	1 = 1	(3) P(1) is true!			
	is true for $k \ge 1$.		(4) You have to actually state	e this	
$S_k = 1 + 4 + 7 + 10 + \dots + (3)$		$(k-2) = \frac{k}{2}(3k-1)$	(5) Replace n with k		
Then, prove $P(k + 1)$ is true					
$S_{k+1} = 1 + 4$	+7+10++(3k-2)	$\frac{2}{2} + (3(k+1) - 2) = \frac{k}{2}$	(3k-1) + (3(k+1)-2)	(6)	
$=S_{k}+($	$(3(k+1)-2) = \frac{k}{2}(3k-1)$	(-1) + (3k + 3 - 2)	(7) Substitute S_k and then sin	nplify	
$=S_{\mathrm{k}}+$ ($(3(k+1)-2) = \frac{k}{2}(3k-1)$	(-1) + (3k + 1)	(8)		
$=S_{k}+($	$(3(k+1)-2) = \frac{k}{2}(3k-1)$	-1) + $\frac{2}{2}(3k+1)$	(9) Rewrite		
$=S_{\mathrm{k}}+$ ($(3(k+1)-2) = \frac{1}{2}(k \bullet)$	(3k-1)+2(3k+1)	(10) Factor out $\frac{1}{2}$		
$=S_{\mathrm{k}}+($	$3(k+1) - 2) = \frac{1}{2} (3k^2)^{-1}$	-k+6k+2	(11)		
$=S_{\mathrm{k}}+$ ($(3(k+1)-2) = \frac{1}{2} (3k^2)$	+5k+2)	(12)		
$=S_{\mathrm{k}}+$ ($(3(k+1)-2) = \frac{1}{2}((k+1))$	(-1)(3k+2)	(13)		
$=S_{\mathrm{k}}+$ ($(3(k+1)-2) = \frac{1}{2} ((k+1)-2) = \frac{1}{2} ((k$	(-1)(3k+3-1)	(14)		
$=S_{\mathrm{k}}+$ ($(3(k+1)-2) = \frac{1}{2}((k+1)) = \frac{1}{2}($	(-1)(3(k+1)-1))	(15)		
$=S_k+($	$(3(k+1)-2) = \frac{(k+1)}{2}$	$\left((3(k+1)-1)\right)$	(16)		
		10			

Therefore,

 $1 + 4 + 7 + 10 + \dots + (3n - 2) = \frac{n}{2}(3n - 1)$ is true for all $n \in \mathbb{N}$. \therefore (17) State conclusion



3] $S_n = 1^2 + 2^2 + 3^2 + \ldots + n^2 = \frac{n(n+1)(2n+1)}{6}$				
When $n = 1$ $1^2 = \frac{1(1+1)(2(1)+1)}{6}$	(1) Write 1 on the left and 1 for n on the sum formula (right) side			
$1 = \frac{1(2)(3)}{6}$	(2) Simplify			
1 = 1	(3) P(1) is true!			
Assume $P(k)$ is true for $k \ge 1$.	(4) You have to actually state this			
$S_k = 1^2 + 2^2 + 3^2 + \ldots + k^2 = \frac{k(k+1)}{k}$	$\frac{0(2k+1)}{6}$ (5) Replace <i>n</i> with <i>k</i>			
Then, prove $P(k + 1)$ is true				
$S_{k+1} = \underbrace{\frac{1^2 + 2^2 + 3^2 + \ldots + k^2}{6} + (k+1)^2 = \frac{k(k+1)(2k+1)}{6} + (k+1)^2}_{6} $ (6) = $\underbrace{S_k}_{k} + (k+1)^2 = \frac{k(k+1)(2k+1)}{6} + \frac{6(k+1)^2}{6}$ (7) Substitute S_k and get common denominator				
$=\frac{S_{k}}{S_{k}}+(k+1)^{2}=\frac{k(k+1)(2k+1)}{6}+\frac{6(k+1)(2k+1)}{6}$	$\frac{(7)}{6}$ (7) Substitute S_k and get common denominator			
$= S_{k} + (k+1)^{2} = \frac{(k+1)[k(2k+1) + 6(k+1)]}{6}$				
$= S_{k} + (k+1)^{2} = \frac{(k+1)\left[2k^{2} + k + 6k + 6k^{2} + 6k^{2}\right]}{6}$	6] (9) Distribute			
$= S_{k} + (k+1)^{2} = \frac{(k+1)\left[2k^{2} + 7k + 6\right]}{6}$	(10) Simplify			
$= S_k + (k+1)^2 = \frac{(k+1)(k+2)(2k+3)}{6}$	(11) <i>Could</i> stop here and go to (14)			
$= S_{k} + (k+1)^{2} = \frac{(k+1)((k+1)+1) + (2)}{6}$	$\frac{k+2+1)}{(12)}$			
$= S_k + (k+1)^2 = \frac{(k+1)((k+1)+1) + (2)}{6}$	((k+1)+1) (13)			
	n(n+1)(2n+1)			

Therefore, $S_n = 1^2 + 2^2 + 3^2 + ... + n^2 = \frac{n(n+1)(2n+1)}{6}$ is true for all $n \in \mathbb{N}$. \therefore (14) State conclusion

41 S_n = 2 + 7 + 12 + ... (5*n* − 3) =
$$\frac{n}{2}(5n - 1)$$

When *n* = 1
2 = $\frac{1}{2}(5(1) - 1)$ (1) Write 1 on the left and 1 for *n* on the sum formula (right) side
2 = $\frac{1}{2}(4)$ (2) Simplify
2 = 2 (3) P(1) is true!
Assume P(*k*) is true for *k* ≥ 1. (4) You have to actually state this
 $S_k = 2 + 7 + 12 + ... (5k - 3) = \frac{k}{2}(5k - 1)$ (5) Replace *n* with *k*
Then, prove P(*k* + 1) is true
 $S_{k+1} = \frac{2 + 7 + 12 + ... (5k - 3)}{5k} + (5(k + 1) - 3) = \frac{k}{2}(5k - 1) + (5(k + 1) - 3)$ (6)
 $= \frac{5k}{5k} + (5k + 2) = \frac{k}{2}(5k - 1) + (5k + 2)$ (7) Substitute S_k and simplify
 $= S_k + (5k + 2) = \frac{k}{2}(5k - 1) + \frac{2(5k + 2)}{2}$ (8) Get common denominator
 $= S_k + (5k + 2) = \frac{5k^2 - k + 10k + 4}{2}$ (9)
 $= S_k + (5k + 2) = \frac{5k^2 + 9k + 4}{2}$ (10)
 $= S_k + (5k + 2) = \frac{(k + 1)(5(k + 1) - 1)}{2}$ (12)
Therefore, $S_n = 2 + 7 + 12 + ... (5n - 3) = \frac{n}{2}(5n - 1)$ is true for all $n \in \mathbb{N}$. \therefore (13) State conclusion

Use the formulas for the sums of powers of integers find the sum of each.

_ _

5]
$$\sum_{k=1}^{6} k^2 - k = \frac{6(6+1)(2(6)+1)}{6} - \frac{6(6+1)}{2} = \frac{6(7)(13)}{6} - \frac{6(7)}{2} = 91 - 21 = 70$$

You have to show the substitution into
the formulas to receive credit!!!
6] $\sum_{i=1}^{6} 6i^2 - 8i^3 = 6\left(\frac{6(6+1)(2(6)+1)}{6}\right) - 8\left(\frac{(6)^2(6+1)^2}{4}\right) = 6(7)(13) - \frac{8(36)(49)}{4} = 546 - 3528 = -2982$

Still completing this part...

EX 5] Prove
$$\sum_{k=1}^{n} k^{4} = \frac{n(n+1)(2n+1)(3n^{2}+3n-1)}{30}$$

When $n = 1$
 $1^{4} = \frac{1(1+1)(2 \cdot 1+1)(3 \cdot 1^{2} + 3 \cdot 1 - 1)}{30}$ (1) $1^{4} = 1$ (left side), substitute on right side
 $1 = \frac{1(2)(3)(5)}{30}$ (2) Simplify
 $1 = \frac{30}{30}$ (3) Simplify
 $1 = 1$ (3) P(1) is true!
Assume S(k) is true for $k \ge 1$. (4) State this
 $S_{k} = \sum_{i=1}^{n} k^{4} = 1^{4} + 2^{4} + 3^{4} + 4^{4} + \dots + k^{4} = \frac{k(k+1)(2k+1)(3k^{2} + 3k-1)}{30}$ (5) Replace *n* with *k*
Then, prove P(k+1) is true
 $S_{k+1} = 1^{4} + 2^{4} + 3^{4} + 4^{4} + \dots + k^{4} + (k+1)^{4} = \frac{k(k+1)(2k+1)(3k^{2} + 3k-1)}{30} + (k+1)^{4}$ (6)
 $= S_{k} + (k+1)^{4} = \frac{k(k+1)(2k+1)(3k^{2} + 3k-1)}{30} + (k+1)^{4}$ (7) Substitute
 $= S_{k} + (k+1)^{4} = \frac{k(k+1)(2k+1)(3k^{2} + 3k-1)}{30} + \frac{30(k+1)^{4}}{30}$ (8) LCD
 $= S_{k} + (k+1)^{4} = \frac{k(k+1)(2k+1)(3k^{2} + 3k-1)}{30} + \frac{30(k+1)^{4}}{30}$ (9) Simplify
 $= S_{k} + (k+1)^{4} = \frac{k(k+1)(2k+1)(3k^{2} + 3k-1) + 30(k+1)^{4}}{30}$ (10) Simplify
 $= S_{k} + (k+1)^{4} = \frac{k(k+1)(2k+1)(3k^{2} + 3k-1) + 30(k+1)^{4}}{30}$ (10) Simplify

$$= S_k + (k+1)^4 = \frac{(k+1)[6k^4 + 39k^3 + 91k^2 + 89k + 30]}{30}$$

$$= S_{k} + (k+1)^{4} = \frac{(k+1)[(2k^{2} + 7k + 6)(3k^{2} + 9k + 5)]}{30}$$

(12) Simplify
You can thank me later...
(13) Factor

$$= S_{k} + (k+1)^{4} = \frac{(k+1)[(k+2)(2k+3)(3k^{2}+9k+5)]}{30}$$
(1)
$$= S_{k} + (k+1)^{4} = \frac{(k+1)(k+2)[(2(k+1)+1))(3k^{2}+9k+5)]}{30}$$
(1)

3) Factor
$$2k^2 + 7k + 6$$

14) Rewrite
$$2k + 3$$
 as $2(k + 1) + 1$

$$= S_{k} + (k+1)^{4} = \frac{(k+1)(k+2)[(2(k+1)+1))(3(k+1)^{2} + 9(k+1) - 1)]}{30}$$
(15)

In (15), we replace every *k* with (k + 1). Then, use your algebra skills to determine what number goes here

 $3k^{2} + 9k + 5 = 3(k + 1)^{2} + 9(k + 1) + _____$ = 3(k² + 2k + 1) + 9k + 9 + _____= = 3k^{2} + 6k + 3 + 9k + 9 + _____= = 3 k^{2} + 15k + 12