§ 11.5 Notes on The Binomial Theorem

Open your text to page 816 to complete the following section:

$$
\begin{aligned}
& (x+a)^{1}= \\
& (x+a)^{2}= \\
& (x+a)^{3}= \\
& (x+a)^{4}=
\end{aligned}
$$

NOTE: Observations about these expansions:

1) In each expansion there are \qquad terms.
2) In each expansion, a and b have \qquad roles.
The powers of a decrease by 1 in successive terms, whereas the powers of b increase by 1 .
3) The sum of the powers of each term is \qquad _.

EX] In the expansion of $(x+y)^{5}$, the sum of the powers of each term is \qquad .
4)The coefficients \qquad .

Binomial Theorem:

If x and a are real numbers and n is a positive integer, then

$$
\begin{aligned}
(\mathrm{x}+\mathrm{a})^{\mathbf{n}} & =\binom{n}{0} \mathrm{x}^{\mathbf{n}}+\binom{n}{1} \mathrm{x}^{\mathbf{n - 1}} \mathrm{a}+\binom{n}{2} \mathrm{x}^{\mathbf{n}-2} \mathrm{a}^{2}+\ldots+\binom{n}{n-1} \mathrm{xa}^{\mathbf{n}-\mathbf{1}}+\binom{n}{n} \mathrm{a}^{\mathbf{n}} \\
& =\sum_{j=0}^{n}\left(\frac{n}{j}\right) x^{n-j} a^{j}
\end{aligned}
$$

where $\binom{n}{j}$ is the binomial coefficient $\binom{n}{j}=\frac{n!}{j!(n-j)!}$.

Remember: Factorial Notation: $n!=n(n-1)(n-2) \ldots 3 \bullet 2 \bullet 1$

$$
\binom{n}{j}=\frac{n!}{j!(n-j)!}
$$

This is read as " n over j " and represents the binomial coefficient.
Note: Our textbook notates this as ${ }_{\mathrm{n}} C_{\mathrm{j}}$, while most other texts use the form ${ }_{n} C_{\mathrm{r}}$. In the formula, each j would then be replaced with an r.

Your calculator can find it by the following:
$\binom{5}{3}$ would be 5 MATH PRB $3: n C r$ ENTER 3 ENTER

Your calculator then displays your answer. Isn't technology great! You'll still have to be able to do this by hand, because your calculator can't handle really big numbers

- Open your text to page 816 and copy down Example 1.
- Be sure to use your calculator for (d).
- Copy down all steps, as this is what is expected on your homework problems as well as on a test/quiz to receive credit.
- Copy down the four useful formulas found on page 817 into your notes.

You've Got Problems!

Complete by hand, and verify with your calculator.

1) Find $\binom{5}{3}$
2) Find ${ }_{6} C_{4}$
3) Find $\binom{15}{7}$
4) Find ${ }_{12} C_{11}$

Solutions:

1) $\binom{5}{3}=\frac{5!}{3!(5-3)!}=\frac{5!}{3!(2)!}=\frac{5 \bullet 4 \cdot 3!}{3!(2)!}=\frac{20}{2}=10$
2) $\binom{15}{7}=\frac{15!}{7!(8)!}=\frac{15 \bullet 14 \cdot 13 \cdot 12 \cdot 11 \cdot 10 \cdot 9 \bullet 8!}{7 \bullet 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1 \bullet(8)!}=6435$
3) ${ }_{6} C_{4}=\binom{6}{4}=\frac{6!}{4!(2)!}=\frac{6 \bullet 5 \bullet 4!}{4!(2)!}=\frac{30}{2}=15$
4) ${ }_{12} C_{11}=\binom{12}{11}$ uses the formula $\binom{n}{n-1}=n \rightarrow{ }_{12} C_{11}=12$

EXPANDING BINOMIALS

There are two methods to use to expand binomials - one is Pascal's Triangle, and the other is the Binomial Theorem. We will take a look at each...

Pascal’s Triangle Method

Expand $(2 a+b)^{3}$ using Pascal's Triangle
(1) List the coefficients of the correct row $\quad(2 a+b)^{3}=1()()+3()()+3()()+1()()$ in the triangle...the

$$
(2 a+b)^{3}=1()()+3()()+3()()+1()()
$$

degree tells you which row!
(2) Fill in the terms

$$
(2 a+b)^{3}=1(2 a)(b)+3(2 a)(b)+3(2 a)(b)+1(2 a)(b)
$$

$$
(2 a+b)^{3}=1(2 a)^{3}(b)^{0}+3(2 a)^{2}(b)^{1}+3(2 a)^{1}(b)^{2}+1(2 a)^{0}(b)^{3}
$$

(3) Fill in the exponents

$$
\begin{aligned}
& (2 a+b)^{3}=1\left(8 a^{3}\right)(1)+3\left(4 a^{2}\right)(b)+3(2 a)\left(b^{2}\right)+1(1)\left(b^{3}\right) \\
& (2 a+b)^{3}=8 a^{3}+12 a^{2} b+6 a^{2}+b^{3} \therefore
\end{aligned}
$$

(4) Simplify
(5) Simplify

Binomial Theorem Method

Expand $(2 \mathrm{a}+\mathrm{b})^{3}$ using the Binomial Theorem
This method is similar to using Pascal's Triangle Method, except that you have to compute the binomial coefficients, whereas in Pascal's Triangle Method, the row gives you the binomial coefficients.
(1)

$$
\begin{equation*}
(2 a+b)^{3}=\left(\frac{3!}{0!(3-0)!}\right)(2 a)^{3}(b)^{0}+\left(\frac{3!}{1!(3-1)!}\right)(2 a)^{2}(b)^{1}+\left(\frac{3!}{2!(3-2)!}\right)(2 a)^{1}(b)^{2}+\left(\frac{3!}{3!(3-3)!}\right)(2 a)^{0}(b)^{3} \tag{2}
\end{equation*}
$$

(3) $\quad(2 a+b)^{3}=\left(\frac{3!}{0!(3)!}\right)(2 a)^{3}(b)^{0}+\left(\frac{3!}{1!(2)!}\right)(2 a)^{2}(b)^{1}+\left(\frac{3!}{2!(1)!}\right)(2 a)^{1}(b)^{2}+\left(\frac{3!}{3!(0)!}\right)(2 a)^{0}(b)^{3}$
(4) $\quad(2 a+b)^{3}=\left(\frac{3!}{0!(3)!}\right)(2 a)^{3}(b)^{0}+\left(\frac{3 \bullet 2!}{1!(2)!}\right)(2 a)^{2}(b)^{1}+\left(\frac{3 \cdot 2!}{2!(1)!}\right)(2 a)^{1}(b)^{2}+\left(\frac{3!}{3!(0)!}\right)(2 a)^{0}(b)^{3}$
(5) $\quad(2 a+b)^{3}=1(2 a)^{3}(b)^{0}+3(2 a)^{2}(b)^{1}+3(2 a)^{1}(b)^{2}+1(2 a)^{0}(b)^{3}$

* This step is the same as (2) and (3) in Pascal's Triangle Method

(6) $\quad(2 a+b)^{3}=1\left(8 a^{3}\right)(1)+3\left(4 a^{2}\right)(b)+3(2 a)\left(b^{2}\right)+1(1)\left(b^{3}\right)$
(7) $\quad(2 a+b)^{3}=8 a^{3}+12 a^{2} b+6 a b^{2}+b^{3} \therefore$

Note: \quad When you are asked to expand using the binomial method, your work needs to include how you set up the problem, as illustrated above.

FINDING INDIVIDUAL TERMS

Sometimes you will be asked to find a specific term in a binomial expansion, not needing to expand the whole thing! Write down each below. Describe any patterns you notice in the set up. Then find the term asked for.

Problem

Set up

1. Find the $4^{\text {th }}$ term of $(x+3 y)^{11}$

$$
\binom{11}{3}(x)^{11-3}(3 y)^{3}
$$

2. Find the $7^{\text {th }}$ term of $(4 x-2 y)^{15}$

$$
\binom{15}{6}(4 x)^{15-6}(-2 y)^{6}
$$

3. Find the $10^{\text {th }}$ term of $\left(\frac{1}{2} x+3 y\right)^{12} \quad\binom{12}{9}\left(\frac{1}{2} x\right)^{12-9} \quad(3 y)^{9}$

Solutions:

Description of patterns for finding the $4^{\text {th }}$ term of $(x+3 y)^{11}$:

1. $\binom{11}{3} x^{11-3}(3 y)^{3}=\frac{11!}{3!(8)!}\left(x^{8}\right)\left(27 y^{3}\right)=\frac{11 \bullet 10 \bullet 9 \bullet 8!}{3 \bullet 2 \bullet 1 \bullet(8)!}\left(x^{8}\right)\left(27 y^{3}\right)=165\left(x^{8}\right)\left(27 y^{3}\right)=4455 x^{8} y^{3}$
1 point $\quad 1$ point $\quad \begin{gathered}\text { Point values for this } \\ \text { type of problem on a }\end{gathered}$ quiz/test
2. $\binom{15}{6}(4 x)^{15-6}(-2 y)^{6}=\frac{15!}{6!(9)!}(4 x)^{9}(-2 y)^{6}=(5005)\left(262144 x^{9}\right)\left(64 y^{6}\right)=8.396996608 \times 10^{10} x^{9} y^{6}$
3. $\binom{12}{9}\left(\frac{1}{2} x\right)^{12-9}(3 y)^{9}=\frac{12!}{9!(3)!}\left(\frac{1}{2} x\right)^{3}(3 y)^{9}=\frac{12 \bullet 11 \bullet 10 \bullet 9!}{9!(3)!}\left(\frac{1}{8} x^{3}\right)\left(19683 y^{9}\right)=541282.5 x^{3} y^{9}$

Pair up with someone close to you. Have that person complete the appropriate column below and sign their name.

I agree with my partner's example
because because

Signed: \qquad

I disagree with my partner's example because

Signed: \qquad

You've Got Problems!

5) Expand ($2 x-3 y)^{5}$ using Pascal's Triangle Method.
6) Expand $(3 \mathrm{a}+\mathrm{b})^{3}$ using the Binomial Theorem Method.
7) Find the fourth term of $(2 a-6 b)^{11}$.
8) What is the coefficient of $x^{8} y^{7}$ in the expansion of $(x+y)^{15}$?

You've Got HW Problems!

Pg. 821 \#5 - 23 (o), 33, 35, 37
Quiz 11.1-11.3

Solutions:

5) Expand ($2 x-3 y)^{5}$ using Pascal's Triangle Method.

$$
\begin{aligned}
(2 x-3 y)^{5} & =1(2 x)^{5}(3 y)^{0}-5(2 x)^{4}(3 y)^{1}+10(2 x)^{3}(3 y)^{2}-10(2 x)^{2}(3 y)^{3}+5(2 x)^{1}(3 y)^{4}-1(2 x)^{0}(3 y)^{5} \\
& =32 x^{5}(1)-5\left(16 x^{4}\right)(3 y)+10\left(8 x^{3}\right)\left(9 y^{2}\right)-10\left(4 x^{2}\right)\left(27 y^{3}\right)+5(2 x)\left(81 y^{4}\right)-1(1)\left(243 y^{5}\right) \\
& =32 x^{5}-240 x^{4} y+720 x^{3} y^{2}-1080 x^{2} y^{3}+810 x y^{4}-243 y^{5}
\end{aligned}
$$

6) Expand $(3 \mathrm{a}+\mathrm{b})^{3}$ using the Binomial Theorem Method.

$$
\begin{array}{rlr}
(3 a+b)^{3} & =\binom{3}{0}(3 a)^{3}(b)^{0}+\binom{3}{1}(3 a)^{2}(b)^{1}+\binom{3}{2}(3 a)^{1}(b)^{2}+\binom{3}{3}(3 a)^{0}(b)^{3} & 1 \text { point } \\
& =(1)\left(27 a^{3}\right)(1)+3\left(9 a^{2}\right)(b)+3(3 a)\left(b^{2}\right)+(1)(1)\left(b^{3}\right) \\
& =27 a^{3}+27 a^{2} b+9 a b^{2}+b^{3} & 1 \text { point }
\end{array}
$$

7) Find the fourth term of $(2 a-6 b)^{11}$.

$$
\begin{gathered}
\binom{11}{3}(2 a)^{11-3}(-6 b)^{3}=165(2 a)^{8}(-6 b)^{3}=-9123840 a^{8} b^{3} \\
1 \text { point }
\end{gathered}
$$

8) What is the coefficient of $x^{8} y^{7}$ in the expansion of $(x+y)^{15}$?
$x^{8} y^{7}$ tells us we want row 8... $\binom{15}{7} x^{8} y^{7}=6435$
