§ 11.5 Notes on The Binomial Theorem

NOTE: Observations about these expansions:

1) In each expansion there are ______ terms.

- 2) In each expansion, *a* and *b* have ______ roles. The powers of a decrease by 1 in successive terms, whereas the powers of *b* increase by 1.
- 3) The sum of the powers of each term is _____.
 - **EX]** In the expansion of $(x + y)^5$, the sum of the powers of each term is _____.

4)The coefficients ______.

Binomial Theorem:

If x and a are real numbers and n is a positive integer, then

$$(\mathbf{x} + \mathbf{a})^{\mathbf{n}} = \binom{n}{0} \mathbf{x}^{\mathbf{n}} + \binom{n}{1} \mathbf{x}^{\mathbf{n}-1} \mathbf{a} + \binom{n}{2} \mathbf{x}^{\mathbf{n}-2} \mathbf{a}^{2} + \dots + \binom{n}{n-1} \mathbf{x} \mathbf{a}^{\mathbf{n}-1} + \binom{n}{n} \mathbf{a}^{\mathbf{n}}$$
$$= \sum_{j=0}^{n} \binom{n}{j} \mathbf{x}^{n-j} \mathbf{a}^{j}$$
where $\binom{n}{j}$ is the *binomial coefficient* $\binom{n}{j} = \frac{n!}{j! (n-j)!}$.

Remember: Factorial Notation: $n! = n (n - 1)(n - 2) \dots 3 \bullet 2 \bullet 1$

Your calculator then displays your answer. Isn't technology great!

You'll still have to be able to do this by hand, because your calculator can't handle really big numbers

- Open your text to page 816 and copy down **Example 1.**
- Be sure to use your calculator for (d).
- Copy down all steps, as this is what is expected on your homework problems as well as on a test/quiz to receive credit.
- Copy down the four useful formulas found on page 817 into your notes.

Solutions:
1)
$$\binom{5}{3} = \frac{5!}{3!(5-3)!} = \frac{5!}{3!(2)!} = \frac{5 \cdot 4 \cdot 3!}{3!(2)!} = \frac{20}{2} = 10$$

2) $\binom{15}{7} = \frac{15!}{7!(8)!} = \frac{15 \cdot 14 \cdot 13 \cdot 12 \cdot 11 \cdot 10 \cdot 9 \cdot 8!}{7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1 \cdot (8)!} = 6435$
3) $_{6}C_{4} = \binom{6}{4} = \frac{6!}{4!(2)!} = \frac{6 \cdot 5 \cdot 4!}{4!(2)!} = \frac{30}{2} = 15$
4) $_{12}C_{11} = \binom{12}{11}$ uses the formula $\binom{n}{n-1} = n \rightarrow {}_{12}C_{11} = 12$
EXPANDING BINOMIALS

There are two methods to use to expand binomials – one is Pascal's Triangle, and the other is the Binomial Theorem. We will take a look at each...

Pascal's Triangle Method

Expand $(2a + b)^3$ using Pascal's Triangle

(1) List the coefficients
 of the correct row
 in the triangle...the
 degree tells you which row!

(2) Fill in the terms
$$(2a + b)^3 = 1(2a)(b) + 3(2a)(b) + 3(2a)(b) + 1(2a)(b)$$

(3) Fill in the exponents
$$(2a + b)^3 = 1(2a)^3(b)^0 + 3(2a)^2(b)^1 + 3(2a)^1(b)^2 + 1(2a)^0(b)^3$$

 $(2a + b)^3 = 1()() + 3()() + 3()() + 1()()$

(4) Simplify

(5) Simplify

Binomial Theorem Method

Expand $(2a + b)^3$ using the Binomial Theorem

This method is similar to using *Pascal's Triangle Method*, except that you have to compute the binomial coefficients, whereas in *Pascal's Triangle Method*, the row gives you the binomial coefficients.

(1)
$$(2a + b)^3 = \begin{pmatrix} 3 \\ 0 \end{pmatrix} (2a)^3(b)^0 + \begin{pmatrix} 3 \\ 1 \end{pmatrix} (2a)^2(b)^1 + \begin{pmatrix} 3 \\ 2 \end{pmatrix} (2a)^1(b)^2 + \begin{pmatrix} 3 \\ 3 \end{pmatrix} (2a)^0(b)^3$$

...and notice how the bottom # begins at 0 and increases to 3.

(2)
$$(2a+b)^3 = \left(\frac{3!}{0!(3-0)!}\right)(2a)^3(b)^0 + \left(\frac{3!}{1!(3-1)!}\right)(2a)^2(b)^1 + \left(\frac{3!}{2!(3-2)!}\right)(2a)^1(b)^2 + \left(\frac{3!}{3!(3-3)!}\right)(2a)^0(b)^3$$

$$(3) \qquad (2a+b)^{3} = \left(\frac{3!}{0!(3)!}\right)(2a)^{3}(b)^{0} + \left(\frac{3!}{1!(2)!}\right)(2a)^{2}(b)^{1} + \left(\frac{3!}{2!(1)!}\right)(2a)^{1}(b)^{2} + \left(\frac{3!}{3!(0)!}\right)(2a)^{0}(b)^{3}$$

(4)
$$(2a+b)^{3} = \left(\frac{3!}{0!(3)!}\right)(2a)^{3}(b)^{0} + \left(\frac{3 \cdot 2!}{1!(2)!}\right)(2a)^{2}(b)^{1} + \left(\frac{3 \cdot 2!}{2!(1)!}\right)(2a)^{1}(b)^{2} + \left(\frac{3!}{3!(0)!}\right)(2a)^{0}(b)^{3}$$

(5)
$$(2a+b)^3 = \frac{1}{2}(2a)^3(b)^0 + \frac{3}{2}(2a)^2(b)^1 + \frac{3}{2}(2a)^1(b)^2 + \frac{1}{2}(2a)^0(b)^3$$

* This step is the same as (2) and (3) in *Pascal's Triangle Method*

(6)
$$(2a+b)^3 = 1(8a^3)(1) + 3(4a^2)(b) + 3(2a)(b^2) + 1(1)(b^3)$$

(7)
$$(2a+b)^3 = 8a^3 + 12a^2b + 6ab^2 + b^3$$
.

Note:

When you are asked to expand using the binomial method, your work needs to include how you set up the problem, as illustrated above.

FINDING INDIVIDUAL TERMS

Sometimes you will be asked to find a specific term in a binomial expansion, not needing to expand the whole thing! Write down each below. Describe any patterns you notice in the set up. Then find the term asked for.

Problem

Set up

- 1. Find the 4th term of $(x + 3y)^{11}$ $\begin{pmatrix} 11 \\ 3 \end{pmatrix} (x)^{11-3} (3y)^3$ 2. Find the 7th term of $(4x - 2y)^{15}$ $\begin{pmatrix} 15 \\ 6 \end{pmatrix} (4x)^{15-6} (-2y)^6$
- 3. Find the 10th term of $\left(\frac{1}{2}x + 3y\right)^{12}$ $\left(\frac{12}{9}\right) \left(\frac{1}{2}x\right)^{12}$ $(3y)^9$

Solutions:

Description of patterns for finding the 4^{th} term of $(x + 3y)^{11}$:

Create your own Problem and Set it Up

Pair up with someone close to you. Have that person complete the appropriate column below and sign their name.

I agree with my partner's example because	I disagree with my partner's example because
Signed:	Signed:

You've Got Problems!

- 5) Expand $(2x 3y)^5$ using Pascal's Triangle Method.
- 6) Expand $(3a + b)^3$ using the *Binomial Theorem Method*.
- 7) Find the fourth term of $(2a 6b)^{11}$.
- 8) What is the coefficient of x^8y^7 in the expansion of $(x + y)^{15}$?

You've Got HW Problems!

Pg. 821 #5 – 23 (o), 33, 35, 37 Quiz 11.1-11.3

Solutions: 5) Expand $(2x - 3y)^5$ using *Pascal's Triangle Method*.

$$(2x-3y)^{5} = 1(2x)^{5}(3y)^{0} - 5(2x)^{4}(3y)^{1} + 10(2x)^{3}(3y)^{2} - 10(2x)^{2}(3y)^{3} + 5(2x)^{1}(3y)^{4} - 1(2x)^{0}(3y)^{5}$$

= $32x^{5}(1) - 5(16x^{4})(3y) + 10(8x^{3})(9y^{2}) - 10(4x^{2})(27y^{3}) + 5(2x)(81y^{4}) - 1(1)(243y^{5})$
= $32x^{5} - 240x^{4}y + 720x^{3}y^{2} - 1080x^{2}y^{3} + 810xy^{4} - 243y^{5}$

6) Expand $(3a + b)^3$ using the *Binomial Theorem Method*.

$$(3a + b)^{3} = \begin{pmatrix} 3 \\ 0 \end{pmatrix} (3a)^{3}(b)^{0} + \begin{pmatrix} 3 \\ 1 \end{pmatrix} (3a)^{2}(b)^{1} + \begin{pmatrix} 3 \\ 2 \end{pmatrix} (3a)^{1}(b)^{2} + \begin{pmatrix} 3 \\ 3 \end{pmatrix} (3a)^{0}(b)^{3}$$

$$= (1)(27a^{3})(1) + 3(9a^{2})(b) + 3(3a)(b^{2}) + (1)(1)(b^{3})$$

$$= 27a^{3} + 27a^{2}b + 9ab^{2} + b^{3}$$

$$1 \text{ point}$$

7) Find the fourth term of $(2a - 6b)^{11}$.

$$\underbrace{ \begin{pmatrix} 11 \\ 3 \end{pmatrix}}_{3} \underbrace{ (2a)^{11-3} (-6b)^{3} = 165(2a)^{8} (-6b)^{3} = -9123840a^{8}b^{3} }_{1 \text{ point}}$$

8) What is the coefficient of x^8y^7 in the expansion of $(x + y)^{15}$?

$$x^8y^7$$
 tells us we want row 8... $\binom{15}{7}x^8y^7 = 6435$