Geometry Mini Midterm
Name: \qquad

1. The measures of two vertical angles are $(10 x-24)^{\circ}$ and $2 x^{\circ}$. Find x.
2. Find the values of x and y so that $\triangle A B C \cong \triangle D E F$ by HL

3. Write the following formulas:
A. Midpoint
B. Distance
C. Slope
4. A postulate is
5. Match each.
\qquad A. The point of concurrency of the three medians of a triangle.
\qquad Incenter
B. The point of concurrency of the three \perp bisectors of a triangle.
\qquad Circumcenter
C. The point of concurrency of the three \angle bisectors of a triangle.
\qquad Centroid
D. The point of concurrency of the three altitudes.

Determine the correct answer for each.

6. Where do the 3 medians of a triangle intersect?
A) inside the triangle
B) Outside the triangle
C) On the triangle
D) Any of these
7. Where do the 3 altitudes of a triangle intersect?
A) inside the triangle
B) Outside the triangle
C) On the triangle
D) Any of these
8. Find the longest side of PQRS .

9. Given: $\overline{\mathrm{RF}} \perp \overline{\mathrm{AT}}$
F is a midpoint of $\overline{A T}$
Prove: $\angle \mathrm{ARF} \cong \angle \mathrm{TRF}$
Statements

Statements	Reasons
$1 . \overline{\mathrm{RF}} \perp \overline{\mathrm{AT}}$	1. Given
2. $\angle \mathrm{AFR}$ and $\angle \mathrm{TFR}$ are right angles	2.
3. $\angle \mathrm{AFR} \cong \angle \mathrm{TFR}$	3.
$4 . \overline{R F} \cong \overline{R F}$	4.
5.	5. Given
6.	6. Definition of Midpoint
7. $\triangle A F R \cong \triangle T F R$	$\mathbf{8 .}$

\qquad

1. The measures of two vertical angles are $(10 x-24)^{\circ}$ and $2 x^{\circ}$. Find x.

$$
\begin{aligned}
10 \mathrm{x}-24 & =2 \mathrm{x} \\
-24 & =-8 \mathrm{x} \\
3 & =\mathrm{x}
\end{aligned}
$$

2. Find the values of x and y so that $\triangle A B C \cong \triangle D E F$ by HL

$$
\begin{gathered}
4 x-6=8 x-30 \\
4 x+24=8 x \\
24=4 x \\
6=x \\
8=3 y-19 \\
27=3 y \\
9=y
\end{gathered}
$$

3. Write the following formulas:
B. Midpoint
B. Distance
C. Slope

$$
\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right) \quad \sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} \quad \frac{y_{2}-y_{1}}{x_{2}-x_{1}}
$$

4. A postulate is a rule that is accepted without proof.
5. Match each.

D Orthocenter
A. The point of concurrency of the three medians of a triangle.

C Incenter
B. The point of concurrency of the three \perp bisectors of a triangle.

B Circumcenter
C. The point of concurrency of the three \angle bisectors of a triangle.

A Centroid D. The point of concurrency of the three altitudes.

Determine the correct answer for each.

6. Where do the 3 medians of a triangle intersect?
A) inside the triangto
B) Outside the triangle
C) On the triangle
D) Any of these
7. Where do the 3 altitudes of a triangle intersect?
A) inside the triangle
B) Outside the triangle
C) On the triangle
D) Any of these
8. Find the longest side of PQRS .

First, find the two missing angles
The longest side is across the largest angle $\left(85^{\circ}\right) \rightarrow \overline{\mathrm{QR}}$.

9. Given: $\quad \overline{\mathrm{RF}} \perp \overline{\mathrm{AT}}$
F is a midpoint of $\overline{A T}$
Prove: $\quad \angle \mathrm{ARF} \cong \angle \mathrm{TRF}$

Statements	Reasons
1. $\overline{\mathrm{RF}} \perp \overline{\mathrm{AT}}$	1. Given
2. $\angle \mathrm{AFR}$ and $\angle \mathrm{TFR}$ are right angles	2. Def. Of Perpendicular Lines
3. $\angle \mathrm{AFR} \cong \angle \mathrm{TFR}$	3. All right angles are congruent
4. $\overline{R F} \cong \overline{R F}$	4. Reflexive Property of Segment Congruence
5. F is a midpoint of $\overline{\mathrm{AT}}$	5. Given
6. $\overline{A F} \cong \overline{F T}$	6. Definition of Midpoint
7. $\triangle A F R \cong \Delta T F R$	7. SAS
8. $\angle \mathrm{ARF} \cong \angle \mathrm{TRF}$	8. Corresponding Parts of \cong Triangles are $\cong(\mathrm{CPCTC})$

