N/L	-4-i
- IVI a	atrix - a rectangular arrangement of numbers in rows and columns
D:	mensions - The dimensions of a matrix with <i>m</i> rows and <i>n</i> columns
are	e m x n.
FL	ements (entries) - the numbers in a matrix
Lit	ements (entries) - the numbers in a matrix
Ea	ual Matrices - Two matrices are equal if they have the same
	nensions and equal elements in corresponding positions.
u I I	mensions and equal elements in corresponding positions.
Sc	alar: a number by which you multiply a matrix
	mure a manager by which you mure pry a marrix
Sc	alar Multiplication: The process of multiplying each element by a
	llar
	* To add or subtract matrices, add or subtract corresponding
	elements
	*To multiply by a scalar, multiply all elements by the scalar

 $\underline{Ex\ 3}$ The following matrix represents the inventory of a chain of entertainment stores. If CDs cost \$15, DVDs cost \$20, VHSs cost \$18, and Games Cost \$30, what is the total value of the inventory at each store?

	CDs	DVDs	VHS	Ss Games	CDs	15	
Store 1					DVDs	20	
Store2	2600	800	150	120	VHSs	18	
Store 3	1850	650	190	100	Games		
					Games	30	

Store 1 had an inventory value of \$61,100.

Store 2 had an inventory value of \$61,300.

Store 3 had an inventory value of \$47,170

To use a calculator for matrices:
1. Use the MATRIX button.
To enter a matrix: MATRIX → EDIT
Choose the letter you want to name the matrix.
Type in the dimensions (rows x columns)
Type in the elements (Press ENTER between each element.)
Press 2nd QUIT to exit.
Fiess 2lid QUIT to exit.
2. To do operations with matrices:
MATRIX → NAMES
Choose the matrix you want to go first.
Type the operation you want to perform.
, , , , , , , , , , , , , , , , , , ,
Repeat steps 1-3 until you have the expression you're
evaluating.
Press ENTER to get the sum, difference or product.
-

Multip	lving	matrices	together:

You can multiply two matrices together if the number of columns in matrix A equals the number of rows in matrix B.

$$A \cdot B = AB$$

$$(m \times p) (p \times p) = (m \times p)$$

Ex 4 Is AB defined or undefined? What are the dimensions of the product, if possible?

Matrix A's dim.	Matrix B's dim.	Defined or not	Dimensions		
a) 2 x 4	4 x 3	Defune	2 v 3		
b) 5 x <mark>7</mark>	7 x 2	Dofmel	5×2		
c) 10 x 2	2 x 13		10 X 13		
d) 1 x 4	1 x 4	Not Deline			

AA Objective: Students will be able to find the determinant up to a 3x3 by hand and higher sized determinants using a Calculator. Students will be able to find the inverse matrix of a given matrix both by hand and calculator. Students will be able to solve using matrices.

Day 2 Notes: Matrix Determinants and Inverse

Determinant – a number associated with every matrix, given by det A or by

The det.

Matrix A

Ex 1 Find the determinants of the following square matrices.

$$-24-(-2)=-22$$
 $(4)(1)(3)+(-2)(-2)(2)$
-24+2 = -22

Ex 1 Find the determinants of the following square matrices.

a)
$$\begin{bmatrix} 6 & -2 \\ 1 & -4 \end{bmatrix} = \begin{bmatrix} 6 & -2 \\ 1 & -2 \end{bmatrix} = \begin{bmatrix} 6 & -2 \\ 1 & -2$$

Identity Matrix – a square matrix (n x n) that has 1's on the diagonal

Inverse Matrix – Two matrices are inverses of each other if their products, AB and BA, are equal to the ______.

Identity Matrix

Use x^{-1} to find the inverse of a matrix.

Using your brain:

If
$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
, $A^{-1} = \frac{1}{\det(A)} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$

Ex 2 Find the inverse of
$$A = \begin{bmatrix} 3 & 2 \\ 2 & 4 \end{bmatrix}$$

$$A = \frac{1}{\det A} \begin{bmatrix} 4 & -2 \\ -2 & 3 \end{bmatrix}$$

$$A^{-1} = \frac{1}{8} \begin{bmatrix} 4 & -2 \\ -2 & 3 \end{bmatrix}$$

$$A^{-1} = \begin{pmatrix} \frac{1}{2} & -\frac{1}{4} \\ -\frac{1}{4} & \frac{3}{8} \end{pmatrix}$$

$$(4)(1)(3) + (-2)(2) + (0)(1)(5)$$

$$(12) + (8) + (6) - (0) + (-46) + (6)$$

$$- (-46)$$

$$(66)$$

Matrix Equation: A system that is converted to a _______ form.

Ex 3 Rewrite the following systems as matrix equations.

a)
$$-2x - 5y = -19$$

 $3x + 2y = 1$

b)
$$2x + y = -13$$

 $x - 3y = 11$
 2 | 3 | 3 | 3 | 3 | 3 | 4 | 3 | 4 |

$$\begin{bmatrix} -2 & -5 \\ 3 & 2 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} -19 \\ 1 \end{bmatrix}$$

$$Ax = B$$

 $X = A^{-1}B$

Notes Day 3 - Matrix Applications

 $\underline{\text{Ex 1}}$ The approximate coordinates (in miles) of a triangular region representing a city and its suburbs are (10, 20), (-8, 5), and (-4, -5). What is the area of this region?

$$A = \frac{\pm 1}{2} \begin{bmatrix} 10 & 20 & 1 \\ -8 & 5 & 1 \\ -4 & 5 & 1 \end{bmatrix}$$

$$A = \frac{\pm 1}{2} \begin{bmatrix} 50 - 80 + 40 - (-20 - 50 - 160) \end{bmatrix}$$

$$A = \frac{\pm 1}{2} \begin{bmatrix} 0 - (-230) \\ -4 & 5 \end{bmatrix}$$

$$A = \frac{\pm 1}{2} \begin{bmatrix} 240 \end{bmatrix}$$

$$A = 120 \text{ years units}$$

$$A = 120 \text{ years units}$$

$$A = 120 \text{ years}$$

$$(1/2) \det(181)$$

$$120$$

.

Solve the linear system using Inverse Matrices.

9.
$$3x-3y=-6$$
 $4x+y=22$

$$\begin{bmatrix}
3 & -3 \\
4 & 1
\end{bmatrix}
\begin{bmatrix}
x \\
y
\end{bmatrix}
=
\begin{bmatrix}
-6 \\
22
\end{bmatrix}
\begin{bmatrix}
x \\
y
\end{bmatrix}
=
\begin{bmatrix}
-6 \\
22
\end{bmatrix}
\begin{bmatrix}
x \\
-4 \\
3
\end{bmatrix}
=
\begin{bmatrix}
x \\
y
\end{bmatrix}
=
\begin{bmatrix}
10. & 2x+3y=0 \\
5x+7y=-1 \\
4 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
x \\
y
\end{bmatrix}
=
\begin{bmatrix}
-6 \\
22
\end{bmatrix}
\begin{bmatrix}
x \\
y
\end{bmatrix}
=
\begin{bmatrix}
1 & 3 \\
-4 & 3
\end{bmatrix}$$

$$\begin{bmatrix}
x \\
y
\end{bmatrix}
=
\begin{bmatrix}
x \\
y
\end{bmatrix}
=$$

12.
$$3x+6y+z=3$$

$$x+3y+z=3$$

$$3x+y-2z=-5$$

$$\begin{bmatrix} 3 & 6 & 1 \\ 1 & 3 & 1 \\ 2 & 1 & -2 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 3 & 6 & 1 \\ 3 & 1 & 2 \\ 3 & 1 & 2 \end{bmatrix} \begin{bmatrix} 3 & 6 & 1 \\ 3 & 1 & 2 \\ 3 & 1 & 2 \end{bmatrix} \begin{bmatrix} 3 & 6 & 1 \\ 3 & 1 & 2 \\ 3 & 1 & 2 \end{bmatrix} \begin{bmatrix} 3 & 6 & 1 \\ 3 & 1 & 2 \\ 3 & 1 & 2 \end{bmatrix} \begin{bmatrix} 3 & 6 & 1 \\ 3 & 1 & 2 \\ 3 & 1 & 2 \end{bmatrix} \begin{bmatrix} 3 & 6 & 1 \\ 3 & 1 & 2 \\ 3 & 1 & 2 \end{bmatrix} \begin{bmatrix} 3 & 6 & 1 \\ 3 & 1 & 2 \\ 3 & 1 & 2 \end{bmatrix} \begin{bmatrix} 3 & 6 & 1 \\ 3 & 1 & 2 \\ 3 & 1 & 2 \end{bmatrix} \begin{bmatrix} 3 & 6 & 1 \\ 3 & 1 & 2 \\ 3 & 1 & 2 \end{bmatrix} \begin{bmatrix} 3 & 6 & 1 \\ 3 & 1 & 2 \\ 3 & 1 & 2 \end{bmatrix} \begin{bmatrix} 3 & 6 & 1 \\ 3 & 1 & 2 \\ 3 & 1 & 2 \end{bmatrix} \begin{bmatrix} 3 & 6 & 1 \\ 3 & 1 & 2 \\ 3 & 1 & 2 \end{bmatrix} \begin{bmatrix} 3 & 6 & 1 \\ 3 & 1 & 2 \\ 3 & 1 & 2 \end{bmatrix} \begin{bmatrix} 3 & 6 & 1 \\ 3 & 1 & 2 \\ 3 & 1 & 2 \end{bmatrix} \begin{bmatrix} 3 & 6 & 1 \\ 3 & 1 & 2 \\ 3 & 1 & 2 \end{bmatrix} \begin{bmatrix} 3 & 6 & 1 \\ 3 & 1 & 2 \\ 3 & 1 & 2 \end{bmatrix} \begin{bmatrix} 3 & 6 & 1 \\ 3 & 1 & 2 \\ 3 & 1 & 2 \end{bmatrix} \begin{bmatrix} 3 & 6 & 1 \\ 3 & 1 & 2 \\ 3 & 1 & 2 \end{bmatrix} \begin{bmatrix} 3 & 6 & 1 \\ 3 & 1 & 2 \\ 3 & 1 & 2 \end{bmatrix} \begin{bmatrix} 3 & 6 & 1 \\ 3 & 1 & 2 \\ 3 & 1 & 2 \end{bmatrix} \begin{bmatrix} 3 & 6 & 1 \\ 3 & 1 & 2 \\ 3 & 1 & 2 \\ 3 & 1 & 2 \end{bmatrix} \begin{bmatrix} 3 & 6 & 1 \\ 3 & 1 & 2 \\ 3 & 1 & 2 \\ 3 & 1 & 2 \end{bmatrix} \begin{bmatrix} 3 & 6 & 1 \\ 3 & 1 & 2 \\ 3 & 1 & 2 \\ 3 & 1 & 2 \end{bmatrix} \begin{bmatrix} 3 & 6 & 1 \\ 3 & 1 & 2 \\ 4 & 1 & 2 \\ 3 & 1 & 2 \\ 4 & 1 & 2 \\ 3 & 1 & 2 \\ 4 & 2 & 2 \\ 4 & 2 & 2 \\ 4 & 2 & 2 \\ 4 & 2 & 2 \\ 4 & 2 & 2 \\ 4 & 2 & 2 \\ 4 & 2 & 2 \\ 4 & 2 & 2 \\ 4 & 2 & 2 \\ 4 & 2 & 2 \\ 4 & 2 & 2 \\ 4 & 2 & 2 \\ 4 & 2 & 2 \\ 4 & 2 & 2 \\ 4 & 2 & 2 \\ 4 & 2 & 2 \\ 4 & 2 & 2 \\ 4 & 2$$

Collinear Points

on same line

(2,#)

Jessich's Way - 2 det.

1-901

1-6-21

1-201

31

6:25tandard
7:2Trig
8:2Integer
8:12oomStat
8-12oomStat
8-12oomStat
8-12oomStat
8-12oomStat
8-12oomStat
8-12oomStat

Solution No infinitely Solutions

