Geometry Semester Exam Review

Chapters 1-6

Show all of your work.

A note to remember, for this review AND the actual exam - It is always helpful to draw a picture. I encourage you to do that for any problem a picture is not given. GOOD LUCK!!

Name: \qquad
Date: \qquad
Period: \qquad
Teacher:

Part I. Fill in the blank.

1. If $A M=M B$ and points A, M and B are collinear, then M is the \qquad .
2. In a triangle, the smallest angle is across from \qquad .
3. If two parallel lines are cut by a transversal, then all corresponding angles are \qquad .
4. If A is between B and C and are collinear, then the Segment Addition Postulate says
\qquad .
5. A right triangle has \qquad right angle and \qquad acute angles.
6. \qquad , ____, , ____, \qquad
\qquad (5) are methods to prove triangles congruent.
7. The intersection of two planes is a \qquad .
8. In quadrant \qquad , the x and y coordinates are both negative.
9. Acute angles measure \qquad .
10. Equiangular triangles are also \qquad .
11. Parallel lines have the same \qquad .
12. The intersection of two lines is a \qquad .
13. Corresponding sides of congruent triangles are \qquad .
14. The slope of a horizontal line is \qquad .
15. Two angles are complementary if \qquad _.
16. The angles in a triangle sum to \qquad .
17. Vertical angles are \qquad .
18. If a conditional statement is false, then so is its \qquad .
19. The hypotenuse of a right triangle is opposite the \qquad .
20. If two sides of a triangle have length 4 and 6 then the third side must be between \qquad and \qquad .
21. The \qquad of a right triangle is the longest side.
22. The slope of a vertical line is \qquad _.
23. In a triangle, the largest angle is across from \qquad .
24. If two lines are parallel, then alternate interior angles are \qquad .

Part II. Free response by chapter.

Chapter 1

Use the diagram to determine true or false.

1. Points A, B and H are collinear. \qquad
2. Point A lies on line m. \qquad
3. Points B, C and H are coplanar. \qquad
4. Points E, J and F are collinear.
5. Point C lies on line n.
6. Plane $A B C$ and plane $\overline{B C F}$ intersect at point B.

7. Find the length of the segment with endpoints $H(2,3)$ and $J(6,7)$. \qquad
8. Find the midpoint of the segment $M N$ with endpoints $M(8,9)$ and $N(-2,1)$. \qquad
9. True or false: If B is between M and $T, M B=B T-M T$. \qquad
10. If $\mathrm{m} \angle 1=4(\mathrm{~m} \angle 2)^{\circ}$, find $\mathrm{m} \angle 2$. \qquad

11. Find $\mathrm{m} \angle \mathrm{ABC}$ if $\overline{\mathrm{BD}}$ bisects $\angle \mathrm{ABC}, \mathrm{m} \angle 1=(5 \mathrm{x}-11)^{\circ}$ and $\mathrm{m} \angle 2=(3 x+5)^{\circ}$. \qquad

12. The measure of an angle is three times the measure of its supplement. Find the measure of the angle. \qquad
13. Find the value of y. \qquad

Use the diagram to the right for $14-15$.
14. Find the value of x if $m \angle A B C=6 x^{\circ}, m \angle 1=(2 x+5)^{\circ}$, and $m \angle 2=(3 x-1)^{\circ}$. \qquad

Chapter 2

For questions 1 - 3 , write the statement in if-then form.

1. Two lines intersect at exactly one point.
2. All tigers are cats.
3. All right angles measure 90 degrees.

Write the conditional statement in if-then form, and then the converse, inverse and contrapositive.
4. Vertical angles are congruent.

If-then: \qquad .

Converse: \qquad .

Inverse: \qquad _.
Contrapositive: \qquad .

If possible, write the conclusion. State the law of logic that you used, or write "no conclusion."
5. a. If you have a driver's license, then you may drive a car.
b. Cindy has a driver's license.
c. \qquad
6. a. If $\overline{\mathrm{AB}} \cong \overline{\mathrm{CD}}$, then $\overline{\mathrm{CD}} \cong \overline{\mathrm{AB}}$.
b. If $\overline{C D} \cong \overline{A B}$, then $C D=A B$.
c. \qquad
7. a. All right angles are congruent.
b. Vertical angles are congruent.
c. \qquad

For questions 8 - 10, name the property of equality that justifies each statement.
8. If $\mathrm{m} \angle \mathrm{A}+\mathrm{m} \angle \mathrm{B}=180^{\circ}$ and $\mathrm{m} \angle \mathrm{A}=110^{\circ}$, then $110+\mathrm{m} \angle \mathrm{B}=180^{\circ}$.
9. If $A B=C D$, then $C D=A B$. \qquad
10. If $\mathrm{m} \angle \mathrm{K}=\left(\frac{1}{2} \mathrm{~m} \angle \mathrm{~L}\right)^{\circ}$, then $2 \mathrm{~m} \angle \mathrm{~K}=\mathrm{m} \angle \mathrm{L}$.
11. In the conditional "If p, then q," the q is called the \qquad .
12. Find the measure of $\angle 1$.

Chapter 3

Refer to the figure below. Identify the name for each pair of angles.

1. $\angle 5$ and $\angle 7$ \qquad
2. $\angle 1$ and $\angle 8$ \qquad
3. $\angle 4$ and $\angle 2$ \qquad
4. $\angle 1$ and $\angle 3$ \qquad
5. $\angle 4$ and $\angle 5$ \qquad
6. If $\mathrm{m} \angle 1=80^{\circ}, \mathrm{m} \angle 2=40^{\circ}$, and $\mathrm{a} \| \mathrm{b}$, find the angle measures.

$\mathrm{m} \angle 3=$ \qquad $\mathrm{m} \angle 4=$
$\mathrm{m} \angle 5=$ \qquad
$\mathrm{m} \angle 6=$ \qquad
$\mathrm{m} \angle 7=$ \qquad
$\mathrm{m} \angle 8=$ \qquad $\mathrm{m} \angle 9=$ \qquad
$\mathrm{m} \angle 10=$ \qquad
$\mathrm{m} \angle 11=$ \qquad

Find the value of x and y.
7. $a \| b$

8.

Find the value of x so that $a \| b$.

10.

11. Tell whether a line whose slope is undefined is horizontal, vertical, or neither. \qquad
12. Find the slope of the line perpendicular to the line passing through (4, -3) and ($1,-1$). \qquad
13. Write the equation of the line with a slope of 4 passing through ($-1,3$). \qquad
14. Write the equation of the line parallel to $y=\frac{1}{2} x+9$ passing through $(-2,3)$.

Chapter 4

Determine whether each statement is true or false.

1. All isosceles triangles are acute.
2. An acute triangle can be equilateral.
3. A scalene triangle is never obtuse. \qquad
4. A right triangle can be isosceles. \qquad

Find the value of x.
5.

6.

Determine which postulate or theorem can be used to prove the triangles are congruent.
7.

8.

9.

Fill in the blank with always, sometimes, or never.
10. An equilateral triangle is \qquad an isosceles triangle.
11. An isosceles triangle is \qquad an equilateral triangle.
12. A triangle \qquad has one obtuse angle and one right angle.
13. An equilateral triangle is \qquad an obtuse triangle.
14. An equilateral triangle is \qquad an acute triangle.

Find the value of x and y.

17.

18. What is the vertex of $\angle A B C$? \qquad

Chapter 5

Fill in the blank.

1. Perpendicular bisectors intersect at a point called the \qquad .
2. Angle bisectors intersect at a point called the \qquad .
3. Medians intersect at a point called the \qquad _.
4. Altitudes intersect at a point called the \qquad .

List the sides of $\Delta W X Y$ in order from longest to shortest if the angles of $\Delta W X Y$ have the indicated measures.
5. $\mathrm{m} \angle \mathrm{W}=(4 \mathrm{x}-1)^{\circ} \quad \mathrm{m} \angle \mathrm{X}=(7 \mathrm{x}+3)^{\circ} \quad \mathrm{m} \angle \mathrm{Y}=(3 \mathrm{x}-4)^{\circ}$ \qquad
6. $\mathrm{m} \angle \mathrm{W}=(5 \mathrm{x}+2)^{\circ} \quad \mathrm{m} \angle \mathrm{X}=(6 \mathrm{x}-5)^{\circ} \quad \mathrm{m} \angle \mathrm{Y}=(48-2 \mathrm{x})^{\circ}$ \qquad
7. Two sides of a triangle are 16 and 22 centimeters in length. Determine whether 39 centimeters can be the length of the third side?

Write the inequality relating each pair of measures.
8. $m \angle P R Q$ \qquad $\mathrm{m} \angle \mathrm{PRS}$

9. $\mathrm{m} \angle \mathrm{DBC}$ \qquad $\mathrm{m} \angle \mathrm{ABE}$

10. Write an inequality to describe the possible values of x.

Chapter 6

1. List the three ways to prove triangles similar. \qquad
2. The ratios of 3 angles of a triangle are $2: 5: 11$. Find the measure of each angle.
3. Find the geometric mean of 8 and 12 .
4. Given: $\frac{B D}{C D}=\frac{E A}{C E}$. Find the length of $B C$.

5. Given: $\frac{R N}{R P}=\frac{Q M}{Q L}$. Find RP.

6. Two similar posters have a scale factor of $4: 5$. The large poster's perimeter is 85 inches. Find the smaller poster's perimeter.

Midterm $\mathcal{M C}$ review, Part 1

1) Ray $P R$ is shown in which sketch?
a)

b)

c) $\stackrel{\square}{\mathbf{P}}$
d) $\underset{R}{ }$

2) If $\mathrm{RS}=32.2$ and $\mathrm{QS}=62.8$, find QR .
a) 95
b) 32.2
c) 30.6
d) 20.6
3) Use the Segment Addition Postulate to solve for p .

$$
\begin{aligned}
& \mathrm{FE}=4 \mathrm{p}+20 \\
& \mathrm{EG}=5 \mathrm{p}+16 \\
& \mathrm{FG}=45
\end{aligned}
$$

a) $\mathrm{p}=1$
b) $\mathrm{p}=4$
c) $\mathrm{p}=5$
d) $p=6$
4) Find the distance between $\mathrm{A}(-6,0)$ and $\mathrm{B}(-4,4)$.
a) 116
b) $\sqrt{20}$
c) $\sqrt{116}$
d) 20
5) Find the midpoint of $\mathrm{A}(-6,0)$ and $\mathrm{B}(-4,4)$.
a) $(-1,2)$
b) $(-5,2)$
c) $(-8,-4)$
d) $(-2,8)$
6) M is the midpoint of segment AB. Given the coordinates of $A(2,-4)$ and $M(4,6)$, find the coordinates of B.
a) $(3,1)$
b) $(6,16)$
c) $(6,8)$
d) $(6,2)$
7) Which of the following angles measures 125° ?
a)

b)

c)

d)

8) If $m \angle \mathrm{JOL}=50^{\circ}$ and $m \angle \mathrm{KOL}=27^{\circ}$, then what is the measure of $\angle \mathrm{JOK}$?
a) 25°
b) 23°
c) 28°
d) 20°

9) Given that $m \angle \mathrm{GED}=60^{\circ}, m \angle \mathrm{GEF}=2 x+7$ and $m \angle \mathrm{DEF}=7 x-1$, find $m \angle \mathrm{GEF}$ and $m \angle \mathrm{DEF}$.
a) $m \angle \mathrm{GEF}=41^{\circ}$ and $m \angle \mathrm{DEF}=19^{\circ}$
b) $m \angle \mathrm{GEF}=47^{\circ}$ and $m \angle \mathrm{DEF}=13^{\circ}$
c) $m \angle \mathrm{GEF}=13^{\circ}$ and $m \angle \mathrm{DEF}=47^{\circ}$
d) $m \angle \mathrm{GEF}=19^{\circ}$ and $m \angle \mathrm{DEF}=41^{\circ}$

10) In the figure below, $m \angle \mathrm{AED}=128^{\circ}$. Which of the following statements is false?
a) $m \angle \mathrm{BEC}=128^{\circ}$
b) $\angle \mathrm{AEB}$ and $\angle \mathrm{DEC}$ are congruent
c) $\angle \mathrm{BEC}$ and $\angle \mathrm{CED}$ are vertical angles
d) $m \angle \mathrm{AEB}=52^{\circ}$

11) $\angle 1$ and $\angle 2$ are \qquad .
a) a linear pair
b) complementary angles
c) supplementary angles
d) vertical angles
12) Find the measure of $\angle 1$.
a) 42°
b) 48°
c) 58°
d) 138°

13) Solve for x.
a) 0
b) 1
c) 2
d) 5

14) Solve for x.
a) 1
b) 2
c) 3
d) 6

15) Name an angle that is adjacent to $\angle B O C$
a) $\angle \mathrm{DOE}$
b) $\angle \mathrm{AOE}$
c) $\angle \mathrm{DOB}$
d) $\angle \mathrm{BOA}$

16) Using the diagram above, name an angle that is complementary to $\angle \mathrm{COD}$.
a) $\angle \mathrm{AOE}$
b) $\angle \mathrm{BOC}$
c) $\angle \mathrm{DOE}$
d) $\angle \mathrm{AOC}$
17) Rewrite the statement in if-then form: Vertical angles are congruent.
a) If angles are congruent then they are vertical angles.
b) If vertical angles are congruent then they can be measured.
c) Angles are vertical angles if and only if they are congruent.
d) If angles are vertical angles then they are congruent.
18) What is the converse of the statement, "If it rains then I carry my umbrella."?
a) "If it does not rain, then I do not carry my umbrella."
b) "If I do not carry my umbrella, then it does not rain."
c) "If I do not carry my umbrella, then I will get wet."
d) "If I carry my umbrella, then it rains."
19) "If I get a chance then I will succeed." In this conditional statement, the underlined portion is
a) the hypothesis
b) the argument
c) the conclusion
d) the converse
20) What is the inverse of the statement, "If two lines are parallel, then they do not intersect."?
a) "If two lines are not parallel then they intersect.'
b) "If two lines intersect then they are not parallel."
c) "If two lines do not intersect then they may be skew."
d) "If two lines do not intersect then they are not parallel."
21) Which of the following statements is false?
a) Three non-collinear points determine a plane.
b) Any three points are collinear.
c) A line contains at least two points.
d) Through any two distinct points there exists exactly one line.
22) State a counterexample to the following statement: "If $x^{2}=25$, then $x=5$."
a) $x=5$
b) $x=-5$
c) $x^{2}=25$
d) $x^{2}=100$
23) The figure at right represents which of the following statements?
a) two perpendicular rays
b) two perpendicular lines
c) a straight angle
d) $\mathrm{AB}=\mathrm{AC}$
24) Identify this property of congruence: $\overline{C D} \cong \overline{C D}$
a) Transitive
b) Reflexive
c) Symmetric
d) Substitution
25) In the cube shown at right, $\overleftrightarrow{A D}$ and $\overleftrightarrow{H G}$ are called \qquad
a) parallel lines
b) perpendicular lines
c) intersecting lines
d) skew lines

26) In the figure shown, $\angle 1$ and $\angle 2$ are
a) same-side interior angles
b) corresponding angles
c) alternate interior angles
d) alternate exterior angles
27) In the figure, $\angle 6$ and $\angle 3$ are \qquad
A) corresponding angles
B) alternate interior angles
C) alternate exterior angles
D) consecutive interior angles
\qquad

28) In the figure above, $\angle 6$ and $\angle 2$ are \qquad
a) alternate interior angles
b) alternate exterior angles
c) corresponding angles
d) same-side interior angles
29) Find $m \angle 1$, given that $P Q \| R S$
a) 11°
b) 79°
c) 91°
d) 101°

30) In the figure, $l \| n$ and r is a transversal.

Which of the following is not necessarily true?
a) $\angle 2 \cong \angle 6$
b) $\angle 8 \cong \angle 2$
c) $\angle 7 \cong \angle 4$
d) $\angle 5 \cong \angle 3$

31) In the figure shown, $\overleftrightarrow{H C} \| \overleftrightarrow{G D}$, and $m \angle A B C=108^{\circ}$.

Which of the following statements is false?
a) $m \angle \mathrm{DEF}=72^{\circ}$
b) $\angle \mathrm{ABH}$ and $\angle \mathrm{AEG}$ are alternate exterior angles
c) $\angle \mathrm{HBF}$ and $\angle \mathrm{AED}$ are alternate interior angles
d) $m \angle \mathrm{GEF}=108^{\circ}$

32) Find the slope of the line passing through the points $(1,-6)$ and $(-6,-5)$.
a) 7
b) $\frac{-1}{7}$
c) $\frac{11}{5}$
d) -7
33) A line parallel to $y=\frac{2}{3} x-7$ is:
a) $y=-\frac{2}{3} x-7$
b) $y=-\frac{3}{2} x+7$
c) $y=\frac{3}{2} x+2$
d) $y=\frac{2}{3} x+1$
34) Which describes the relationship between the lines with equations $-7 x+6 y=4$ and $6 x+7 y=0$?
a) parallel
b) same line
c) perpendicular
d) neither parallel nor perpendicular
35) Classify $\triangle \mathrm{NOP}$.
a) Equilateral
b) Isosceles
c) Scalene
d) none of these
36) Name an obtuse triangle in the diagram to the right.
a) $\triangle \mathrm{ADB}$
b) $\triangle \mathrm{BDC}$
c) $\triangle \mathrm{ABC}$
d) none of

37) Find the value of x.
a) 80°
b) 100°
c) 160°
d) 170°

38) Solve for x.
a) 45
b) 55
c) 90
d) 145

39) Which figures appear to be congruent?
a) 3 and 4
b) 1, 2, and 4
c) 2 and 5
d) 1 and 4

40) If $\triangle A B C \cong \triangle X Y Z$, then $\overline{A C} \cong$ \qquad .
a) $X Y$
b) YZ
c) $X Z$
d) AX
41) If $\Delta \mathrm{JKL} \cong \Delta \mathrm{STU}, \mathrm{JK}=10$ feet, $m \angle \mathrm{~K}=59^{\circ}$, and $m \angle \mathrm{U}=21^{\circ}$, which of the following is false?
a) $\mathrm{JL}=\mathrm{SU}$
b) $\mathrm{KL}=\mathrm{TU}$
c) $m \angle S=100^{\circ}$
d) $\angle \mathrm{K} \cong \angle \mathrm{S}$
42) In the diagram, $\angle \mathrm{B} \cong \angle \mathrm{E}$ and $\angle \mathrm{C} \cong \angle \mathrm{F}$. Find the value of x.
a) 25
b) 35
c) 50
d) 75
43) What must be true for $\triangle \mathrm{ABC} \cong \triangle \mathrm{EDC}$ by SAS?
a) $\angle \mathrm{B} \cong \angle \mathrm{D}$
b) $\overline{A B} \cong \overline{D E}$
c) $\overline{A C} \cong \overline{C E}$
d) $\angle \mathrm{A} \cong \angle \mathrm{E}$

44) Which of the following statements must be true, if $\mathrm{AD} \perp \mathrm{BC}$ and $\mathrm{AB}=\mathrm{AC}$?
a) $\triangle \mathrm{ABD} \cong \triangle \mathrm{ACD}$ by SSS
b) $\triangle \mathrm{ABD} \cong \triangle \mathrm{ACD}$ by SAS
c) $\triangle \mathrm{ABD} \cong \triangle \mathrm{ACD}$ by HL
d) There are no congruent triangles

45) Refer to the figure at right. $\triangle \mathrm{ABC} \cong$ \qquad
a) $\triangle \mathrm{EDC}$
b) $\triangle \mathrm{EDA}$
c) $\triangle \mathrm{ACE}$
d) $\triangle \mathrm{CDE}$

46) Using just the information shown in the diagram, which postulate or theorem can be used to prove that $\triangle \mathrm{ABC} \cong \triangle \mathrm{EDC}$?
a) SSA
b) SSS
c) AAS
d) SAS

48) What is the measure of each base angle of an isosceles triangle if its vertex angle measures 32° and its 2 congruent sides measure 17 inches?
a) 32°
b) 58°
c) 74°
d) 148°
49) In $\triangle \mathrm{ABC}$, if $\overline{A B} \cong \overline{B C}$ and $m \angle \mathrm{~A}=39^{\circ}$, then $m \angle \mathrm{C}=$ \qquad .
a) 39°
b) 51°
c) 102°
d) 141°
50) Find the values of x and y.
a) $x=70^{\circ}$ and $y=50^{\circ}$
b) $x=40^{\circ}$ and $y=110^{\circ}$
c) $x=40^{\circ}$ and $y=70^{\circ}$
d) $x=70^{\circ}$ and $y=110^{\circ}$

51) Identify the longest side of the triangle.
a) $\overline{A B}$
b) $\overline{A C}$
c) $\overline{B C}$
d) All the sides are the same length
52) Arrange the angles of the triangle in order, from largest to smallest.
a) $\angle \mathrm{P}, \angle \mathrm{Q}, \angle \mathrm{R}$
b) $\angle \mathrm{P}, \angle \mathrm{R}, \angle \mathrm{Q}$
c) $\angle \mathrm{Q}, \angle \mathrm{R}, \angle \mathrm{P}$
d) $\angle \mathrm{Q}, \angle \mathrm{P}, \angle \mathrm{R}$
53) The longest side in the figure is \qquad

a) $\overline{N M}$
b) $\overline{M L}$
c) $\overline{L N}$
d) $\frac{L P}{M P}$
54) Two sides of a triangle have lengths 12 and 27.

The length of the third side must be greater than \qquad and less then \qquad .
a) 14,40
b) 15,39
c) 11,28
d) 12,27
55) Which side lengths allow you to construct a triangle?
a) 7, 2, and 2
b) 2,3 , and 8
c) 1, 4, and 9
d) 6,8 , and 10
56) $\overline{M N}$ is a midsegment of $\triangle \mathrm{ABC}$. If $\mathrm{BC}=28$, find the length of $\overline{M N}$.
a) 7
b) 14
c) 28
d) 56

57) In the figure shown, $m \angle \mathrm{AED}=110^{\circ}$. Which statement is false?
a) $m \angle \mathrm{AEB}=80^{\circ}$
b) $\angle \mathrm{AEB}$ and $\angle \mathrm{DEC}$ are vertical angles
c) $\angle \mathrm{BEC}$ and $\angle \mathrm{CED}$ are adjacent angles
d) $m \angle \mathrm{BEC}=110^{\circ}$

58) If line a is parallel to line b, what is $m \angle 1$?
a) 40°
b) 50°
c) 90°
d) 140°

59) Lines $\overleftrightarrow{A B}$ and $\overleftrightarrow{C D}$ intersect at P. $\overrightarrow{P R}$ is perpendicular to $\overleftrightarrow{A B}$ and $m \angle \mathrm{APD}=170^{\circ}$. What is the measure of $\angle \mathrm{DPB}$?
a) 10°
b) 20°
c) 30°
d) 40°

60) A ladder is leaning against a house at an angle of 38°, as shown in the diagram. What is the measure of the angle x, that the ladder makes with the ground?
a) 38°
b) 42°
c) 52°
d) 142°

61) Line a is parallel to line b if:
a) $m \angle 4=m \angle 2$
b) $m \angle 3=m \angle 5$
c) $m \angle 4=m \angle 5$
d) $m \angle 3=m \angle 2$

62) $\triangle \mathrm{ABC}$ is a right triangle with right angle at C . Which are the possible measures of $\angle \mathrm{A}$ and $\angle \mathrm{B}$?
a) 48° and 50°
b) 38° and 32°
c) 52° and 38°
d) 52° and 128°

63) Which conclusion follows logically from the true statements? "If negotiations fail, then the baseball strike will not end."
"If the baseball strike does not end, then the World Series will not be played."
a) If the baseball strike ends, the World Series will be played.
b) If negotiations do not fail, the baseball strike will end.
c) If negotiations fail, the World Series will not be played.
d) If negotiations fail, the World Series will be played.
64) Given that $\overline{A D} \cong \overline{B C}$ and $\overline{A C} \cong \overline{B D}$, which could be used to prove that $\triangle \mathrm{DCA} \cong \triangle \mathrm{CDB}$?
a) SSS
b) SAS
c) ASA
d) AAS

65) On the shores of a river, surveyors marked locations A, B, and C. $m \angle A C B=70^{\circ}$ and $m \angle \mathrm{ABC}=65^{\circ}$. Which lists the distances between these locations in order, least to greatest?
a) $\mathrm{AB}, \mathrm{BC}, \mathrm{AC}$
b) $\mathrm{BC}, \mathrm{AB}, \mathrm{AC}$
c) $\mathrm{BC}, \mathrm{AC}, \mathrm{AB}$
d) $\mathrm{AC}, \mathrm{AB}, \mathrm{BC}$

66) The figure has angle measures as shown. What is $m \angle B C D$?
a) 120°
b) 80°
c) 60°
d) 30°

67) What is $m \angle 3$?
a) 65°
b) 75°
c) 85°
d) 90°

68) Which of the following could be the lengths of the sides of $\triangle A B C$?
a) $\mathrm{AB}=12, \mathrm{BC}=15, \mathrm{AC}=2$
b) $\mathrm{AB}=9, \mathrm{BC}=15, \mathrm{CA}=4$
c) $\mathrm{AB}=150, \mathrm{BC}=100, \mathrm{CA}=50$
d) $\mathrm{AB}=10, \mathrm{BC}=8, \mathrm{AC}=12$
69) To find the contrapositive of a conditional statement you should:
a) Find the inverse of the converse of the original statement.
b) Find the converse of the inverse of the original statement.
c) Negate the hypothesis and conclusion of the converse of the original statement.
d) All of the above.
70) Three lookout towers are located at points A, B, and C on a section of the national forest shown in the diagram. Which of the following is true concerning $\triangle \mathrm{ABC}$ formed by the towers?
a) $m \angle \mathrm{~A}$ is greatest
b) $m \angle C$ is greatest
c) $m \angle \mathrm{~A}$ is least
d) $m \angle \mathrm{C}$ is least

71) What value of x will make lines l and m parallel?
a) 25
b) 30
c) 40
d) 60

72) In the figure, $m \angle \mathrm{CAD}$ is twice $m \angle \mathrm{CAB}$. What is $m \angle \mathrm{CAB}$?
a) 120°
b) 60°
c) 45°
d) 30°

73) Triangle $X Y Z$ is a right triangle with the right angle at Z. Which are possible measures for angle X and angle Y?
a) 40° and 42°
b) 44° and 46°
c) 48° and 50°
d) 52° and 54°

Questions 76-90: True/False. For the following questions, bubble "a" for true and "b" for false.
74) It is possible to have a triangle with side lengths 7,7 , and 9.
75) Corresponding parts of congruent triangles are equal in measure.
76) Coplanar points are collinear.
77) Collinear points are coplanar.
78) SSA is a method to prove triangle congruency.
79) When two planes intersect, they form a line.
80) Equilateral triangles are equiangular.
81) Skew lines are coplanar.
82) If two lines are parallel, they have the same slope.
83) A right triangle can have up to two right angles.
84) In a right triangle, the hypotenuse is adjacent to the right angle.
85) The slope of a horizontal line is zero.
86) The AAA method is used to prove that triangles are congruent.
87) A scalene triangle never has congruent sides.
88) The Symmetric Property states an object is equal to itself (ex. b=b).
a) True
b) False
88) The Symetric Prue
b) False
89) Simplify the following ratio as much as possible: $\frac{8 \text { in }}{2 f t}$
a) $\frac{4}{1}$
b) $\frac{4 \mathrm{in}}{1 \mathrm{ft}}$
c) $\frac{8}{24}$
d) $\frac{1}{3}$
90) Solve the proportion: $\frac{x+2}{10}=\frac{1}{2}$
a) $3 / 10$
b) 3
c) 4
d) 5
91) In the diagram $\triangle A B C \sim \triangle X Y Z$. Find $Y Z$.
a) $9 / 2$
b) 2
c) 5
d) 8

92) Are the two triangles in this diagram similar? If so, give the similarity statement.
a) Yes, $\triangle \mathrm{ABC} \sim \triangle \mathrm{CDE}$
b) Yes, $\triangle \mathrm{ABD} \sim \triangle \mathrm{EDC}$
c) Yes, $\triangle \mathrm{ABD} \sim \triangle \mathrm{ECD}$
d) No, the triangles are not similar.

93) In the diagram shown on the right, what is the length of $\overline{A B}$?
a) 4
b) $3 / 2$
c) $8 / 3$
d) 16

94) If two sides of a triangle have lengths 7 and 11 , which is a possible length for the third side of the triangle?
a) 18
b) 5
c) 4
d) 2

