Date \qquad

Logarithmic and Exponential Equations

* For logarithmic equations, use properties to condense to a single \log on a side before rewriting the equation as an exponent.
* For exponential equations, isolate the base and power, take the log of both sides, and use properties of logarithms to isolate the variable.
* Check for extraneous solutions!!

Ex 1: Solve the logarithmic equations.

a) $-2 \log _{4} x=\log _{4} 9$
$\log _{4} x^{-2}=\log _{4} 9$
$x^{-2}=9$

$$
4^{1}=x(x-3)
$$

$\frac{1}{x^{2}}=9$

$$
\log _{4}(x(x-3))=1
$$

$$
4=x^{2}-3 x
$$

$$
0=x^{2}-3 x-4
$$

$x^{2}=\frac{1}{9}$

$$
0=(x-4)(x+1)
$$

$x= \pm \sqrt{\frac{1}{9}}$
b) $\log _{4} x+\log _{4}(x-3)=1$

$$
x-4=0 \quad x+1=0
$$

$$
x=4 \quad \text { or } \quad x=-1
$$

$x= \pm \frac{1}{3}$
$x=-\frac{1}{3}, \frac{1}{3}$
$\log _{4}\left(-\frac{1}{3}\right)$ is undefined
$\therefore x=\frac{1}{3}$ is the only solution.
Since $\log _{4}(-1)$ is undefined, $x=4$ is the solution.
c) $\ln (x+1)-\ln (x)=2$

$$
\begin{aligned}
\ln \left(\frac{x+1}{x}\right) & =2 \\
\frac{x+1}{x} & =e^{2} \\
x+1 & =x e^{2} \\
1 & =x e^{2}-x \\
1 & =x\left(e^{2}-1\right) \\
\frac{1}{e^{2}-1} & =x \\
0.156 & \approx x
\end{aligned}
$$

d) $\log _{2}(3 x+2)-\log _{4} x=3$

$$
\begin{aligned}
& \log _{2}(3 x+2)-\frac{\log x}{\log 4}=3 \\
& \log _{2}(3 x+2)-\frac{\log _{2} x}{\log _{2} 4}=3 \\
& \log _{2}(3 x+2)-\frac{\log _{2} x}{2}=3 \\
& 2 \log _{2}(3 x+2)-\log _{2} x=6
\end{aligned}
$$

$$
\log _{2}(3 x+2)^{2}-\log _{2} x=6
$$

$$
\log _{2}\left(\frac{(3 x+2)^{2}}{x}\right)=6
$$

$$
2^{6}=\frac{(3 x+2)^{2}}{x}
$$

$$
64=\frac{(3 x+2)^{2}}{x}
$$

$$
64 x=(3 x+2)^{2}
$$

$$
64 x=9 x^{2}+12 x+4
$$

$$
9 x^{2}-52 x+4=0
$$

$$
x=\frac{(52) \pm \sqrt{(-52)^{2}-4(9)(4)}}{2(9)}
$$

$$
x=\frac{52 \pm \sqrt{2560}}{18}
$$

$$
\begin{array}{ll}
x=\frac{52-\sqrt{2560}}{18} & \text { or } \quad x=\frac{52+\sqrt{2560}}{18} \\
x \approx 0.078 & \text { or } \quad x \approx 5.700
\end{array}
$$

e) $\quad \log _{2} x^{\log _{2} x}=4$

$$
\log _{2} x \bullet \log _{2} x=4
$$

$$
\begin{array}{rlrl}
\left(\log _{2} x\right)^{2} & =4 & \\
\log _{2} x & = \pm \sqrt{4} & \\
\log _{2} x & = \pm 2 & \\
\log _{2} x & =-2 \text { or } & \log _{2} x=2 \\
2^{-2} & =x \text { or } & 2^{2}=x \\
\frac{1}{4} & =x \text { or } & 4 & =x
\end{array}
$$

Ex 2: Solve the exponential equations.

a) $2^{2 x}+2^{x}-12=0$

$$
\left(2^{x}\right)^{2}+2^{x}-12=0
$$

$$
\left(2^{x}-3\right)\left(2^{x}+4\right)=0
$$

$$
2^{x}-3=0 \quad \text { or } \quad 2^{x}+4=0
$$

$$
2^{x}=3 \quad \text { or } \quad 2^{x}=-4
$$

$$
\log 2^{x}=\log 3 \quad \text { No solution }
$$

$$
x \log 2=\log 3
$$

$$
x=\frac{\log 3}{\log 2}
$$

$$
x \approx 1.585
$$

b) $\quad 3^{x}=14 \quad$ or $\quad 3^{x}=14$ $\log 3^{x}=\log 14$

$$
x \log 3=\log 14
$$

$$
x=\frac{\log 14}{\log 3}
$$

$$
x \approx 2.402
$$

$$
\begin{aligned}
\ln 3^{x} & =\ln 14 \\
x \ln 3 & =\ln 14 \\
x & =\frac{\ln 14}{\ln 3} \\
x & \approx 2.402
\end{aligned}
$$

$$
\text { c) } \begin{aligned}
2^{x+1} & =5^{1-2 x} \\
\ln 2^{x+1} & =\ln 5^{1-2 x} \\
(x+1) \ln 2 & =(1-2 x) \ln 5 \\
x \ln 2+\ln 2 & =\ln 5-2 x \ln 5 \\
x \ln 2+2 x \ln 5 & =\ln 5-\ln 2 \\
x(\ln 2+2 \ln 5) & =\ln 5-\ln 2 \\
x & =\frac{\ln 5-\ln 2}{\ln 2+2 \ln 5} \\
x & \approx 0.234
\end{aligned}
$$

d) $\quad \frac{e^{x}+e^{-x}}{2}=3$

$$
e^{x}+e^{-x}=6
$$

$$
e^{x}\left(e^{x}+e^{-x}\right)=6 e^{x}
$$

$$
e^{2 x}+1=6 e^{x}
$$

$$
e^{2 x}-6 e^{x}+1=0
$$

$$
\left(e^{x}\right)^{2}-6 e^{x}+1=0
$$

$$
e^{x}=\frac{-(-6) \pm \sqrt{(-6)^{2}-4(1)(1)}}{2(1)}
$$

$$
e^{x}=\frac{6 \pm \sqrt{32}}{2}=\frac{6 \pm 4 \sqrt{2}}{2}
$$

$$
e^{x}=3 \pm 2 \sqrt{2}
$$

$$
e^{x}=3+2 \sqrt{2} \text { or } e^{x}=3-2 \sqrt{2}
$$

$$
\ln \left(e^{x}\right)=\ln (3+2 \sqrt{2}) \text { or } \ln \left(e^{x}\right)=\ln (3-2 \sqrt{2})
$$

$$
x=\ln (3+2 \sqrt{2}) \text { or } x=\ln (3-2 \sqrt{2})
$$

$$
x \approx 1.763 \quad \text { or } \quad x \approx-1.763
$$

Ex 3: Use the graphing utility of your calculator to solve the following.
a) $\log _{2} x+\log _{6} x=3$

Step 1. Place equations in $\mathrm{Y}=$
Floti Flotz Fiots
\&1日 $\frac{103(x)}{103(2)}+\frac{103(8)}{10966)}$ Yzas

Step 2: Use intersect feature

Step 2: Use intersect feature

$$
X=4.479
$$

Step 3: Solution

Step 3: Solution

$$
X=0.448
$$

