Compound Interest

Interest is the cost of using money.

Princinal [.]	Rate of Interest : the amount charged for the use of
The total amount of money borrowed	the principal for a given period of time (written as %, but use decimal for calcs.)
Simple Interest: I = Prt	Payment Period : how long before interest is calculated
$\mathbf{P} = \mathbf{principal}$	Annually: once per year
r = interest rate as a decimal (per annum)	Semiannually: twice per year
t = # years the money is borrowed	Quarterly: four times each year
	Monthly: 12 times each year
	Daily: 365 times each year
Present Value:	Accumulated (Future) Value:
The amount of principal at the beginning of a loan	The amount of money at the end of a loan or
or investment	investment
Compound Interest:	Continuous Compounding:
The interest paid on the principal and previously	The money accrued for an infinite number of
earned interest	payment periods
$A = P\left(1 + \frac{r}{n}\right)^{nt}$	$A = Pe^{rt}$
Effective Rate of Interest:	Present Value Formulas:
the interest rate that is equivalent to the amount of simple interest earned in one year	$P = A \left(1 + \frac{r}{n} \right)^{-nt}$
	$P = Ae^{-rt}$

Zero Coupon Bond:

A bond that is sold now at a discount and will pay its face value at the time when it matures. No interest payments are made.

Ex 1 Find the amount in each problem.

a) What is the amount of money that you'd have if you invested \$50 at an interest rate 6% compounded monthly after a period of 3 years? (#4)

P = 50 R = 0.06 N = 12 T = 3 $A = P\left(1 + \frac{r}{n}\right)^{nt}$ $A = 50\left(1 + \frac{0.06}{12}\right)^{(12)(3)}$ A = 59.83

You would have \$59.83 after 3 years.

b) What is the amount of money that you'd have if you invested \$100 at an interest rate of 12% compounded continuously after a period of 3³/₄ years? (#14)

P = 100 R = 0.12	$A = Pe^{rt}$
T = 3.75	$A = (100)e^{(0.12)(3.75)}$
	A = 156.83

You would have \$156.83 after 3.75 years.

Example 2

a) How much principal would you need to invest to get \$800 after 3½ years at 7% compounded monthly? (#16)

A = 800 P = ? R = 0.07	$A = P \left(1 + \frac{r}{n} \right)^{nt}$
N = 12 T = 3.5	$800 = P\left(1 + \frac{0.07}{12}\right)^{(12)(3.5)}$
	$P = \frac{800}{\left(1 + \frac{0.07}{12}\right)^{(12)(3.5)}}$
	P = 626.6095

To have \$800 after 3.5 years, you would need to invest \$626.61.

b) What interest rate compounded quarterly will give an effective interest rate of 7%? (#24)

$$A = P\left(1 + \frac{r}{n}\right)^{n}$$

$$107 = 100\left(1 + \frac{r}{4}\right)^{(4)(1)}$$

$$1.07 = \left(1 + \frac{r}{4}\right)^{4}$$

$$\frac{\sqrt{1.07}}{1.07} = 1 + \frac{r}{4}$$

$$\frac{\sqrt{1.07}}{4}\left(\frac{\sqrt{1.07}}{-1}\right) = r$$

$$0.0682 \approx r$$

For *P*, choose a number like 100 or
1000. This way, it's easy to mentally
determine 7% of that number, which
will give you the amount you would
have, *A*.

$$4\left(\frac{\sqrt{1.07}-1}{-1}\right) = r$$

$$0.0682 \approx r$$

An interest rate of 6.82% compounded quarterly would have an effective rate of 7%.

Ex 3 How long does if take for an investment to double in value if it is invested at 10% per annum compounded monthly? Compounded continuously? (#32)

Monthly compounding

$$A = P\left(1 + \frac{r}{n}\right)^{nt}$$

$$2P = P\left(1 + \frac{0.10}{12}\right)^{(12)t}$$

$$2 = \left(1 + \frac{0.10}{12}\right)^{12t}$$

$$\ln 2 = \ln\left(1 + \frac{0.10}{12}\right)^{12t}$$

$$\ln 2 = 12t \ln\left(1 + \frac{0.10}{12}\right)$$

$$\frac{\ln 2}{12} = t \ln\left(1 + \frac{0.10}{12}\right)$$

$$\frac{\ln 2}{12 \ln\left(1 + \frac{0.10}{12}\right)} = t$$

$$6.960 \approx t$$

It would take about 7 years for an investment to double.

Continuous compounding

 $A = Pe^{rt}$ $2P = Pe^{(0.10)t}$ $2 = e^{(0.10)t}$ $\ln 2 = 0.10t$ $\frac{\ln 2}{0.10} = t$ $6.931 \approx t$

It would take about 7 years for an investment to double.

<u>Ex 4</u> How much should a \$10,000 face value zero-coupon bond, maturing in 10 years, be sold for now if its rate of return is to be 8% compounded annually? (#53)

We want the present value of \$10,000.

$$P = A \left(1 + \frac{r}{n} \right)^{-nt}$$
$$P = 10000 \left(1 + \frac{.08}{1} \right)^{-1(10)}$$
$$P \approx 4631.934$$

You should sell the zero-coupon bond for \$4631.93

You've Got Problems:

- Page 294 #1-59 (eoo)
- Quiz in 2 classes on 4.6 4.8