\qquad

Compound Interest

Interest is the cost of using money.

Principal: The total amount of money borrowed	Rate of Interest: the amount charged for the use of (he principal for a given period of time (written as \%, but use decimal for calcs.)
Simple Interest: I = Principal $\mathrm{r}=$ interest rate as a decimal (per annum) $\mathrm{t}=$ \# years the money is borrowed	Payment Period: how long before interest is calculated Annually: once per year Semiannually: twice per year Quarterly: four times each year Monthly: 12 times each year Daily: 365 times each year
Present Value: The amount of principal at the beginning of a loan or investment	Accumulated (Future) Value: The amount of money at the end of a loan or investment
Compound Interest: The interest paid on the principal and previously earned interest	Continuous Compounding: The money accrued for an infinite number of payment periods
$A=P\left(1+\frac{r}{n}\right)^{n t}$	$A=P e^{r t}$

Zero Coupon Bond:

A bond that is sold now at a discount and will pay its face value at the time when it matures. No interest payments are made.

Ex 1 Find the amount in each problem.

a) What is the amount of money that you'd have if you invested \$50 at an interest rate 6\% compounded monthly after a period of 3 years? (\#4)

$$
\begin{array}{ll}
\mathrm{P}=50 & A=P\left(1+\frac{r}{n}\right)^{n t} \\
\mathrm{R}=0.06 \\
\mathrm{~N}=12 \\
\mathrm{~T}=3 & A=50\left(1+\frac{0.06}{12}\right)^{(12)(3)} \\
& A=59.83
\end{array}
$$

You would have $\$ 59.83$ after 3 years.
b) What is the amount of money that you'd have if you invested $\$ 100$ at an interest rate of 12% compounded continuously after a period of $33 / 4$ years? (\#14)
$\mathrm{P}=100$
$\mathrm{R}=0.12$
$\mathrm{T}=3.75$

$$
\begin{aligned}
& A=P e^{r t} \\
& A=(100) e^{(0.12)(3.75)} \\
& A=156.83
\end{aligned}
$$

You would have $\$ 156.83$ after 3.75 years.

Example 2

a) How much principal would you need to invest to get $\$ 800$ after $31 / 2$ years at 7% compounded monthly? (\#16)

$$
\begin{array}{ll}
\mathrm{A}=800 & A=P\left(1+\frac{r}{n}\right)^{n t} \\
\mathrm{P}=? \\
\mathrm{R}=0.07 & \mathrm{~N}=12 \\
\mathrm{~T}=3.5 & 800=P\left(1+\frac{0.07}{12}\right)^{(12)(3.5)} \\
& P=\frac{800}{\left(1+\frac{0.07}{12}\right)^{(12)(3.5)}} \\
P=626.6095
\end{array}
$$

To have $\$ 800$ after 3.5 years, you would need to invest $\$ 626.61$.
b) What interest rate compounded quarterly will give an effective interest rate of 7\%? (\#24)

$$
\begin{aligned}
A & =P\left(1+\frac{r}{n}\right)^{n t} \\
107 & =100\left(1+\frac{r}{4}\right)^{(4)(1)} \\
1.07 & =\left(1+\frac{r}{4}\right)^{4} \\
\sqrt[4]{1.07} & =1+\frac{r}{4} \\
\sqrt[4]{1.07}-1 & =\frac{r}{4} \\
4(\sqrt[4]{1.07}-1) & =r \\
0.0682 & \approx r
\end{aligned}
$$

For P, choose a number like 100 or 1000. This way, it's easy to mentally determine 7% of that number, which will give you the amount you would have, A.

An interest rate of 6.82% compounded quarterly would have an effective rate of 7%.

Ex 3 How long does if take for an investment to double in value if it is invested at 10% per annum compounded monthly? Compounded continuously? (\#32)

Monthly compounding

$$
\begin{aligned}
A & =P\left(1+\frac{r}{n}\right)^{n t} \\
2 P & =P\left(1+\frac{0.10}{12}\right)^{(12) t} \\
2 & =\left(1+\frac{0.10}{12}\right)^{12 t} \\
\ln 2 & =\ln \left(1+\frac{0.10}{12}\right)^{12 t} \\
\ln 2 & =12 t \ln \left(1+\frac{0.10}{12}\right) \\
\frac{\ln 2}{12} & =t \ln \left(1+\frac{0.10}{12}\right) \\
\ln 22 & =t \\
12 \ln \left(1+\frac{0.10}{12}\right) & 6.960
\end{aligned}
$$

It would take about 7 years for an investment to double.

Continuous compounding

$$
\begin{aligned}
A & =P e^{r t} \\
2 P & =P e^{(0.10) t} \\
2 & =e^{(0.00) t} \\
\ln 2 & =0.10 t \\
\frac{\ln 2}{0.10} & =t \\
6.931 & \approx t
\end{aligned}
$$

It would take about 7 years for an investment to double.

Ex 4 How much should a $\$ 10,000$ face value zero-coupon bond, maturing in 10 years, be sold for now if its rate of return is to be 8% compounded annually? (\#53)

We want the present value of $\$ 10,000$.
$P=A\left(1+\frac{r}{n}\right)^{-n t}$
$P=10000\left(1+\frac{.08}{1}\right)^{-1(10)}$
$P \approx 4631.934$
You should sell the zero-coupon bond for $\$ 4631.93$

You've Got Problems:

- Page 294 \#1-59 (eoo)
- Quiz in 2 classes on 4.6-4.8

