Pre-Calculus Exam Review Semester 1 Exam

Functions (Chapters 1, 2, and 4) For questions 1 – 6, let $f(x) = \frac{1}{x-5}$ and $g(x) = \frac{1}{x+1}$. 1. What is f + g? 2. What is $f \bullet g$? 3. What is $f \circ g$? 4. What is $g \circ f$? D g of:_____ D_{f ° g}:_____ $\frac{\mathbf{R}_{f \circ g}:}{5. \text{ What is } f^{-1}?}$ $\frac{R_{g \circ f}}{\text{What is } g^{-1}?}$ Answer the questions about the graphs of functions. 7. What is the domain for the function in the graph 8. Sketch a graph of an **even** function. below? 9. Sketch a graph of an **odd** function. 10. Reflect the graph about the origin. 11. Given the graph of f(x) below, sketch the graph 12. Given the graph of g(x) below, sketch the graph of f(x) + 3of $2 \cdot g(x)$.

Find the domain and range for each function below.

$13. f(x) = \sqrt{3+x}$	$14. g(x) = \frac{1}{x+8}$
Domain:	Domain:
Range:	Range:

Questions 15 – 18: Analyze function h(x) in the graph below. (1 point each)

h(x)		15. What is the value of $h(6)$?
	-+++++++ - ++++++++++++++++++++++++++++	
		16. For what value of <i>x</i> does $h(x) = 3$?
	-++++++++++++++++++++++++++++++++++++++	
		17 On what interval(a) is $h(x)$ decreasing?
		17. On what interval(s) is $n(x)$ decreasing:
	-++++++++ * ++++ * + * ++	
		10 0 = -1 = 1 = 1 = 1(-) = 1(-) = 0
	-+++++++++	18. On what interval(s) is $h(x) > 0$?

If
$$f(x) = \frac{x+2}{x-7}$$
 and $g(x) = \frac{3}{x}$, find an expression for each of the following operations.
19. $f+g$
20. $\frac{f}{g}$

If $f(x) = 2x^2 - 5x + 1$, find an expression for each of the following.

<u> </u>	en i i, inia an enpression for each of	ine rono (i ing.
21. $f(x) + 3$		22. $f(x+3)$

<u>Trigonometric Functions</u> (Chapter 5)

Evaluate.

23. Convert $\frac{11\pi}{6}$ to degrees.	24. Convert 210° to radians.	25. What is the <i>exact</i> value of tan 120°?
26. What is the <i>exact</i> value of $\sec \frac{5\pi}{3}$?	27. In which quadrant is θ if csc $\theta > 0$ and tan $\theta < 0$?	28. What is the <i>exact</i> value of $\cos \theta$ if θ is in quadrant II and $\sin \theta = \frac{24}{25}$?
29. If $\cos \alpha = -\frac{1}{5}$ and $\tan \alpha > 0$, what is the exact value of $\sin \alpha$?	30. What is the value of $\tan \theta$ if (-8, 3) is on the terminal side of θ in standard position?	31. Find a negative angle measures that is coterminal with 130°.
32. What is the reference angle of 245° in standard position?	33. What is the reference angle of $\frac{4\pi}{3}$ in standard position?	 34. What is the period and phase shift of <i>f</i>(<i>x</i>) = sin(3<i>x</i> – <i>π</i>)? Period: Phase Shift:

Graph the functions below.

Analytic Trigonometry (Chapter 6)

Find values to answer the following questions.		
41. If $\tan \alpha = -\frac{3}{4}$ when $\frac{\pi}{2} < \alpha < \pi$ and $\cos \beta = \frac{5}{13}$ when $\frac{3\pi}{2} < \beta < 2\pi$, what is the <i>exact</i> value of $\tan(\alpha + \beta)$?	42. When P(2, -5) is on the terminal side of θ in standard position, what is the value of $\cos 2\theta$?	
43. If $\cos \alpha = \frac{3}{5}$ and $\frac{3\pi}{2} < \alpha < 2\pi$, what is the value	44. What is the solution of $\sin \theta = 0.8704$ to the nearest hundredth of a degree?	
of $\sin \frac{\alpha}{2}$?	nearest hundredth of a degree?	
45. What is the solution of sec θ = 1.8492 to the nearest hundredth of a radian?	46. What are the solution(s) of $2\cos^2 \theta + 1 = -3\cos \theta$ if θ is in the interval $[0, 2\pi)$?	

Prove the following identities.

47. $\frac{\tan\theta}{\csc\theta} = \sec\theta - \cos\theta$	48. $\frac{\sin\theta}{\tan\theta} + \frac{\cos\theta}{\cot\theta} = \sin\theta + \cos\theta$

Use reference triangles to find the exact value of each of the following expressions.

49. $\sec\left[\sin^{-1}\left(-\frac{5}{6}\right)\right]$	50. $\cos^{-1}\left[\sin\frac{2\pi}{3}\right]$

Solve the equations below on the interval $0 \le \theta < 2\pi$.

$51. \cos^2 \theta - 1 = 0$	52. $2\sin\theta + 3 = 4$

Conics: (Chapter 9)

Classify each conic section.

$53.\ 5x^2 - 3x - y + 20 = 0$	$54.\ 16y^2 - 25x^2 + 8y = 50$	55. $12x^2 + 7y^2 - x + y = 8$	$56. x^2 + y^2 - 4x = 100$

Find the standard form of the equation the conic given...

57. a parabola whose vertex is (5, 2) and focus is (3, 2).	58. an ellipse whose center is at $(3, 2), a = 3c$ and foci at $(1, 2)$ and $(5, 2)$.	59. a hyperbola whose vertices are (0, 2) and (6, 2) and whose asymptotes are $y = \frac{2}{3}x$ and $y = 4 - \frac{2}{3}x$.

Classify and graph each conic. Identify and label the essential elements to draw the graph.

$60.\ 4x^2 + 25y^2 + 16x - 150y + 141 = 0$	$61. y^2 - 4x^2 - 2y - 48x + 113 = 0$

62. A semielliptical arch over a tunnel for a road through a mountain has a major axis of 100 feet and a height at the center of 40 feet. How high is the arch 5 feet from the edge of the tunnel?

Matrices: (Chapter 10)

$A = \begin{bmatrix} 5\\ -2 \end{bmatrix}$	$\begin{bmatrix} -1 \\ 3 \end{bmatrix}$	$B = \begin{bmatrix} 0 & 7 \\ 4 & -6 \end{bmatrix}$	$C = \begin{bmatrix} 1 \\ 6 \\ 2 \end{bmatrix}$	-3⁻ 0
—	U		LZ	4

Find each product, if possible. NO calculators!

63. <i>AB</i>	64. <i>AC</i>	65. <i>CA</i>
	1	

Solve each system using inverse matrices or row operations. Choose two different methods!

66. $\begin{cases} 2x - 5y = 2\\ 3x - 7y = 1 \end{cases}$	$\begin{cases} 2x + 6z = -9\\ 3x - 2y + 11z = -16 \end{cases}$
	(3x - y + 7z = -11)

68. The University of Georgia and Florida State University scored a total of 39 points during the 2003 Sugar Bowl. The points came from a total of 11 scoring plays, which were a combination of touchdowns, extra-point kicks, and field goals, worth 6, 1, and 3 points respectively. The same number of touchdowns and field goals were scored. How many touchdowns, extra-point kicks and field goals were scored during the game?

69. The graph of a quadratic function in the form $y = ax^2 + bx + c$ contains the points (-2, -2), (1, 7) and (3, -7). What are the values for *a*, *b*, and *c* in this function?

70. What is the average rate of change of	71. If the terminal side of θ intersects the unit circle
$f(x) = 2x^2 - 5x + 9$ from 1 to 3?	at $P\left(\frac{20}{29}, -\frac{21}{29}\right)$, what are the values of the six
	trigonometric functions?
	$\sin \theta = $ $\cos \theta = $ $\tan \theta = $
Average Bate of Changes	$asa \theta = asa \theta = ast \theta =$
72. For θ in the interval [0, 2π), what are the	73. Find the <i>exact value</i> of the expression below.
solutions of the equation below?	
$2\sin(3\theta) + 1 = 0$	$\tan \sin^{-1} \left(-\frac{4}{5} \right) + \cos^{-1} \frac{5}{13}$