Geometry
Chapter 4 Practice Test

Name: \qquad
\qquad

Not all triangles are drawn to scale.

1. The given triangle would be classified as \qquad .
A] Scalene
B] Isosceles
C] Equilateral
D] none

2. The given triangle would be classified as \qquad .

A] Isosceles B] Scalene
C] Equilateral
D] none

3. Find the missing angles. Then, classify each triangle by it's angles.

A] $\triangle \mathrm{BDC}$
B] $\triangle \mathrm{ADB}$
C] $\triangle \mathrm{ABC}$
4. Complete the statement using one of the following words:

Always, Sometimes or Never.
"An isosceles triangle is \qquad an obtuse triangle."

Include a drawing to support your answer to \#4.
5. How many obtuse angles can an isosceles triangle have? Explain how you know.
6. What must be true in order for $\triangle \mathrm{ABC} \cong \triangle \mathrm{EDC}$ by AAS ?
A] $\overline{A C} \cong \overline{C E}$
B] $\angle \mathrm{A} \cong \angle \mathrm{E}$
C] $\angle \mathrm{B} \cong \angle \mathrm{D}$
D] $\overline{A B} \cong \overline{D E}$

7. Which postulate or theorem can be used to justify the measure of $\overline{R T}$?

Given: $\angle R \cong \angle V$

A] SSS
B] AAS
C] ASA
D] SAS
\qquad 8. Refer to the figure and given information shown. Which of the following statements is true?

A] $\Delta \mathrm{HIJ} \cong \Delta \mathrm{KLJ}$ by SAS
B] $\Delta \mathrm{HIJ} \cong \Delta \mathrm{KLJ}$ by ASA
C] $\Delta \mathrm{HIJ} \cong \Delta \mathrm{LKJ}$ by SAS
D] $\Delta \mathrm{HIJ} \cong \Delta \mathrm{LKJ}$ by ASA
Given: $\overline{H J} \cong \overline{J L}, \overline{I J} \cong \overline{K J}$

9. In the diagram, $\angle \mathrm{B} \cong \angle \mathrm{E}$ and $\angle \mathrm{C} \cong \angle \mathrm{F}$. Find the value of x .

10. Find the measure of the interior angles. Not drawn to scale.

11. Find the value of x in the given diagram.

12. Solve for each of the missing angles.

$$
\begin{aligned}
& \angle 1= \\
& \angle 2= \\
& \angle 3= \\
& \angle 4=
\end{aligned}
$$

13. Solve for x .

14. Use the information in the box to classify triangle ABC by sides.

$$
\begin{array}{ll}
\mathrm{AB}=5 \mathrm{x}-17 \\
\mathrm{BC}=4 \mathrm{x}-8 & \text { Perimeter }=70 \\
\mathrm{AC}=11 \mathrm{x}+15
\end{array}
$$

15. Find the value of x.

\qquad 16. Find the value of x.

16. Find the value of x.

18-20 Determine which method you would use to prove the two triangles congruent. If none of the methods apply, write NONE.
18. \qquad

19. \qquad 20. \qquad

21. Triangle $A B C$ has the given vertices. $A(-1,2), B(0,0), C(6,3)$
a) Classify it by its sides (what formula to you need to use for this?)
b) Determine if the triangle is a right triangle. (what do you look at for this?)

Proofs: Review all proofs gone over in class.

Geometry
Chapter 4 Practice Test

Name:
Block: $\quad 12345678$

Not all triangles are drawn to scale.

1. The given triangle would be classified as \qquad .
A] Scalene
B] Isosceles
C] Equilateral
D] none

3 different angles measures means 3 different side lengths
2. The given triangle would be classified as \qquad .

2 equal angle measures means 2 side lengths will be the same
3. Find the missing angles. Then, classify each triangle by it's angles.

Find all missing angles first.
A] $\triangle \mathrm{BDC}$
B] $\triangle \mathrm{ADB}$
C] $\triangle \mathrm{ABC}$
ACUTE
OBTUSE
ACUTE
4. Complete the statement using one of the following words:

Always, Sometimes or Never.
"An isosceles triangle is \qquad an obtuse triangle."

Include a drawing to support your answer to \#4.

SOMETIMES

5. How many obtuse angles can an isosceles triangle have? Explain how you know.

An isosceles triangle can have only 1 obtuse angle. See the diagram above.
\qquad 6. What must be true in order for $\triangle \mathrm{ABC} \cong \triangle \mathrm{EDC}$ by AAS?
A] $\overline{A C} \cong \overline{C E}$
B] $\angle \mathrm{A} \cong \angle \mathrm{E}$
C] $\angle \mathrm{B} \cong \angle \mathrm{D}$
D] $\overline{A B} \cong \overline{D E}$

Be sure you pay attention to the order!!
7. Which postulate or theorem can be used to justify the measure of $\overline{R T}$?

Given: $\angle R \cong \angle V$

A] SSS
B] AAS
C] ASA
D] SAS
8. Refer to the figure and given information shown.

Which of the following statements is true?
Given: $\overline{H J} \cong \overline{J L}, \overline{I J} \cong \overline{K J}$
A] $\Delta \mathrm{HIJ} \cong \Delta \mathrm{KLJ}$ by SAS
B] $\Delta \mathrm{HIJ} \cong \Delta \mathrm{KLJ}$ by ASA
C] $\Delta \mathrm{HIJ} \cong \Delta \mathrm{LKJ}$ by SAS
Order matters!!!
D] $\Delta \mathrm{HIJ} \cong \Delta \mathrm{LKJ}$ by ASA

9. In the diagram, $\angle \mathrm{B} \cong \angle \mathrm{E}$ and $\angle \mathrm{C} \cong \angle \mathrm{F}$. Find the value of x .

$$
\begin{array}{r}
X+50=75 \\
X=25
\end{array}
$$

10. Find the measure of the interior angles. Not drawn to scale.

The sum of all three interior angles is $180^{\circ} \ldots$

$$
\begin{aligned}
24 \mathrm{x}-12 & =180 \\
24 \mathrm{x} & =192 \\
\mathrm{X} & =8
\end{aligned}
$$

Plug in 8 for x to find the value of each angle.

$$
\begin{aligned}
18 x-4 & =140 \\
4 x+5 & =37 \\
2 x-13 & =3
\end{aligned}
$$

CAUTION

$$
\begin{aligned}
& \text { Don't forget to find the } \\
& \text { measure of each angle!!!!! }
\end{aligned}
$$

Double check your work to see that all 3 angles have a sum of 180°.
If not, then you got the wrong value for $x!!$
11. Find the value of x in the given diagram.

First, find all missing angles in each triangle. Now...x, 25°, and 62° have a sum of 180

$$
\begin{aligned}
\mathrm{X}+25+62 & =180 \\
\mathrm{X}+87 & =180 \\
\mathrm{X} & =93^{\circ}
\end{aligned}
$$

12. Solve for each of the missing angles.

13. Solve for x .

Use the Exterior Angle Theorem

$$
\begin{aligned}
& X=27+18 \\
& X=45
\end{aligned}
$$

Find angles 2 and 3 first:
$180-68=112$
Then, find the missing angles in each triangle...

Find angles 2 and 3 first:
$180-68=112$
Use the Exterior Angle
Theorem to find angles 4 and $1 \ldots$
$68=32+\mathrm{m}<1$
$36=\mathrm{m}<1$
$68=40+\mathrm{m}<4$
$28=m<4$
14. Use the information in the box to classify triangle $A B C$ by sides.

$$
\begin{aligned}
& \mathrm{AB}=5 \mathrm{x}-17 \\
& \mathrm{BC}=4 \mathrm{x}-8 \\
& \mathrm{AC}=11 \mathrm{x}+15
\end{aligned} \quad \text { Perimeter }=70
$$

First, solve for x
$\mathrm{AB}+\mathrm{BC}+\mathrm{AC}=70$
$\begin{aligned} 5 \mathrm{X}-17+4 \mathrm{X}-8+11 \mathrm{X}+15 & =70 \\ 20 \mathrm{x}-10 & =70 \\ 20 \mathrm{x} & =80 \\ \mathrm{x} & =4\end{aligned}$

Second, find the length of each side and then compare to make your conclusion.

$$
\begin{aligned}
& \mathrm{AB}=5(4)-17=3 \\
& \mathrm{BC}=4(4)-8=8 \\
& \mathrm{AC}=11(4)+15=59
\end{aligned}
$$

Since the lengths of all 3 sides are different, the triangle is scalene.
\qquad 15. Find the value of x.

Set the two sides equal to each other that are diagonal from the congruent angles.

$$
\begin{gathered}
18 \mathrm{x}-16=56 \\
18 \mathrm{x}=72 \\
\mathrm{X}=4
\end{gathered}
$$

20
16. Find the value of x.

Since the vertex angle is 82°, then the remaining angles must be 98 ($180-82=98$)

Since these are the base angles, they must be the same...so take $1 / 2$ of 98
$4 \mathrm{x}+16=49$

$4 \mathrm{x}=33$
$\mathrm{X}=8.25$
17. Find the value of x.

Notice...all sides are the same, so all angles are the same! This means each angle is $60^{\circ} \ldots$

$$
\begin{array}{r}
2 \mathrm{x}-8=60 \\
2 \mathrm{x}=68 \\
\mathrm{X}=34
\end{array}
$$

20

18 - 20 Determine which method you would use to prove the two triangles congruent. If none of the methods apply, write NONE.
18. \qquad NONE

19. \qquad NONE \qquad 20. \qquad ASA

21. Triangle $A B C$ has the given vertices. $A(-1,2), B(0,0), C(6,3)$
a) Classify it by its sides (what formula to you need to use for this?)
b) Determine if the triangle is a right triangle. (what do you look at for this?)
a) Find the length of each side and compare their lengths. Be sure to show your work!!

$$
\left.\begin{array}{rlrl}
\overline{A B} & =\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} & \overline{B C} & =\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}
\end{array} \begin{array}{l}
\overline{A C}
\end{array}=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}\right)
$$

Since all three sides have different lengths, the triangle is scalene.
b) Find the slopes for each segment. You can do this by graphing or using the slope formula. See if any are negative reciprocals. Watch notation!!

Slope for AB
$m_{\overline{A B}}=\frac{2-0}{-1-0}=\frac{2}{-1}=-2$
Slope for BC
$m_{\overline{B C}}=\frac{3-0}{6-0}=\frac{1}{2}$
Slope for AC

$$
m_{\overline{A C}}=\frac{3-2}{6-(-1)}=\frac{1}{7}
$$

Since the slopes of $\overline{A B}$ and $\overline{B C}$ have a product of -1 , they are negative reciprocals. Therefore, we have a right angle, which means the triangle is a right triangle \odot

Proofs: Review all proofs gone over in class.

