terms?
$$f = 10,000$$
 $f = 18$ $f = .04$ $n = 2$
 $A = 10,000 (1 + \frac{.04}{2})^2 = 20,398.87$

When $f = 10,000 (1 + \frac{.04}{2})^2 = 10,404$
 $A - f = 1$ so $10,404 - 10,000 = 404 Intent

 $f = 10,000 (1)(1)$ Iyar

 $f = \frac{404}{10000} = 0.0404$

$$20,000 = 10,000 \left(1 + \frac{.04}{2}\right)^{2\xi}$$

$$2 = \left(1 + \frac{.04}{2}\right)^{2\xi}$$

$$1nd = 2\xi \ln\left(1 + \frac{.04}{2}\right)$$

$$\xi = \frac{1n\lambda}{2\ln\left(1 + \frac{.04}{2}\right)}$$

$$\xi = 17.5 \text{ g/s}$$

20. The logistic growth model

 $P(t) = \frac{0.8}{1 + 1.67e^{-0.16t}}$ represents the proportion of new cars with a Global Positioning System (GPS). Let t = 0 represent 2003, t = 1 represent 2004, etc. What proportion of new cars in 2003 had a GPS? What is the maximum proportion of new cars that

will have a GPS?

In 2003
$$t = 0$$
 $f(0) = \frac{.8}{1 + 1.67} = .2996$

30%

Proportion in 2003 is 30%.

Maximum proportion w/ GPS is 80%

T= 11.3 9.3 Maturity: \$20,398.87 Effective 4.0490 t= 17.5

21. A skillet is removed from an oven whose temperature is 450°F and placed in a room whose temperature is 70°F. After 5 minutes, the temperature of the skillet is 400°F. How long will it be until its temperature is 150°F?

$$u_0 = 450^{\circ}F$$
 $T = 70^{\circ}$ $u(t) = T + (u_0 - T)e^{kt}$
 $400 = 70 + (450 - 70)e^{5k}$
 $330 = 380e^{5k}$
 $\ln \frac{330}{380} = 5k$
 $\ln \frac{33}{38} = k$ $K \approx -.08$

$$150 = 70 + (450 - 70)e$$

$$80 = 380 e^{-.028t}$$

$$10.028 = -.028t$$

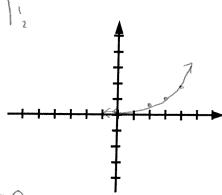
$$10.028 = t$$

$$10.$$

22. The half-life of radioactive cobalt is 5.27 years. If 100 grams is present now, how much will be present in 20 years?

$$50 = 100e^{k(5.27)}$$
 $\frac{1}{2} = e^{5.27K}$
 $\ln \frac{1}{2} = 5.27K$
 $\ln \frac{1}{2} = K \quad K \approx -1/32$
 $\frac{101}{5.27}$

 $A(20) = 100 e^{-.132 \times 20}$ A(20) = 7.136


About 7, 1369 will be left in 20 years.

5 ea.

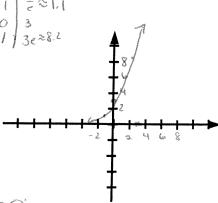

Use transformations to graph the functions below. (Show your tables or sketch a graph of each transformation.)

8. $f(x) = -2^x + 3$

_

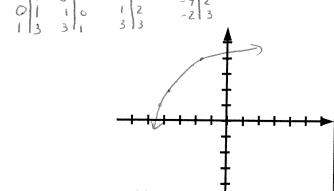
Asymptote: y = 0Domain: $(-\infty, \infty)$ Range: y > 0 $(0, \infty)$

Asymptote: y = 3Domain: $(-\infty, \infty)$ Range: y < 3 $(-\infty, 3)$ 10. $f(x) = \log_3(x+5) + 2$

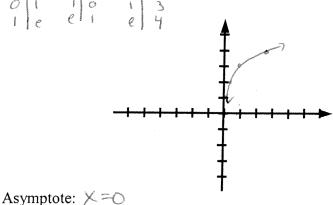

Domain: (20, 5) R

9.
$$f(x) = 3e^{x}$$

Mult 43 by 3


1 2 ≈ 1.1

0 1 0 3
1 3 $e^{\approx 8.2}$


Asymptote: y = 0

Domain: $(-\infty, \infty)$ Range: y > 0 $(0, \infty)$

Asymptote: X = -5Domain: $(-5, \infty)$ Range: $(-\infty, \infty)$

11.
$$f(x) = 3 + \ln x$$

Asymptote: $\times = \bigcirc$

Domain: $(\bigcirc \ \varnothing)$ Range: $(\bigcirc \ \varnothing)$

Range:
$$(-\infty, \infty)$$