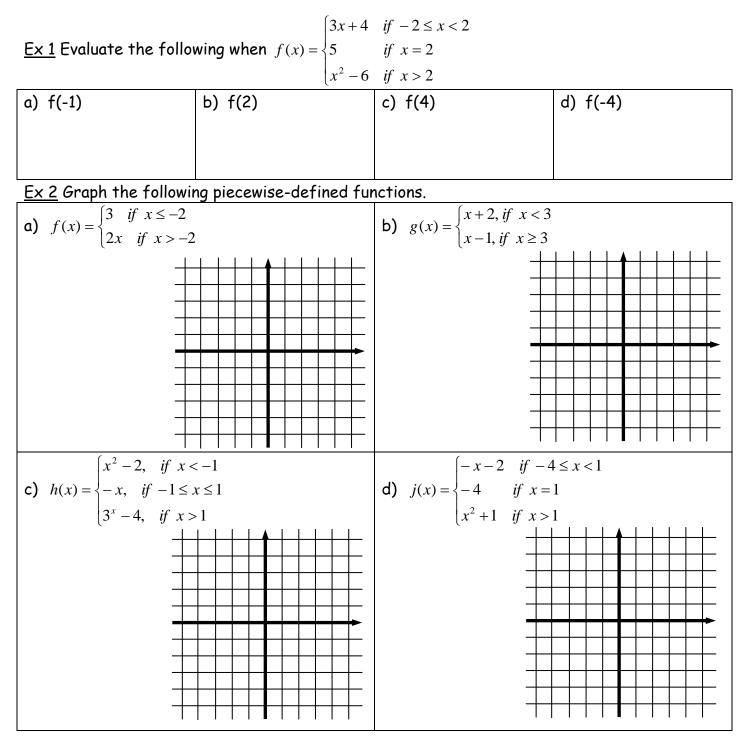
Objective: Students will be able to write evaluate piecewise defined functions, graph piecewise defined functions, evaluate the domain and range for piecewise defined functions, and solve application problems.

Notes: Piecewise Functions

<u>**Piecewise-defined Function</u>**: a function that is defined differently for different parts of its domain. Pay attention to the domain description when evaluating and graphing.</u>



<u>Ex 3</u> An economy car rented in Florida from National Car Rental® on a weekly basis costs \$95 per week. Extra days cost \$24 per day until the day rate exceeds the weekly rate, in which case the weekly rate applies. Find the cost C of renting an economy car as a piecewise function of the number x days used, where $7 \le x \le 14$. (Note: Any part of a day counts as a full day.)

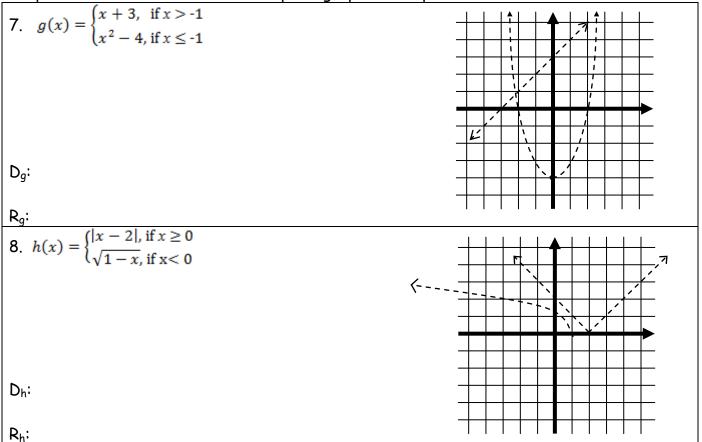
<u>You've Got Problems!</u> Page 88 9-16, 29-38, 41, 43

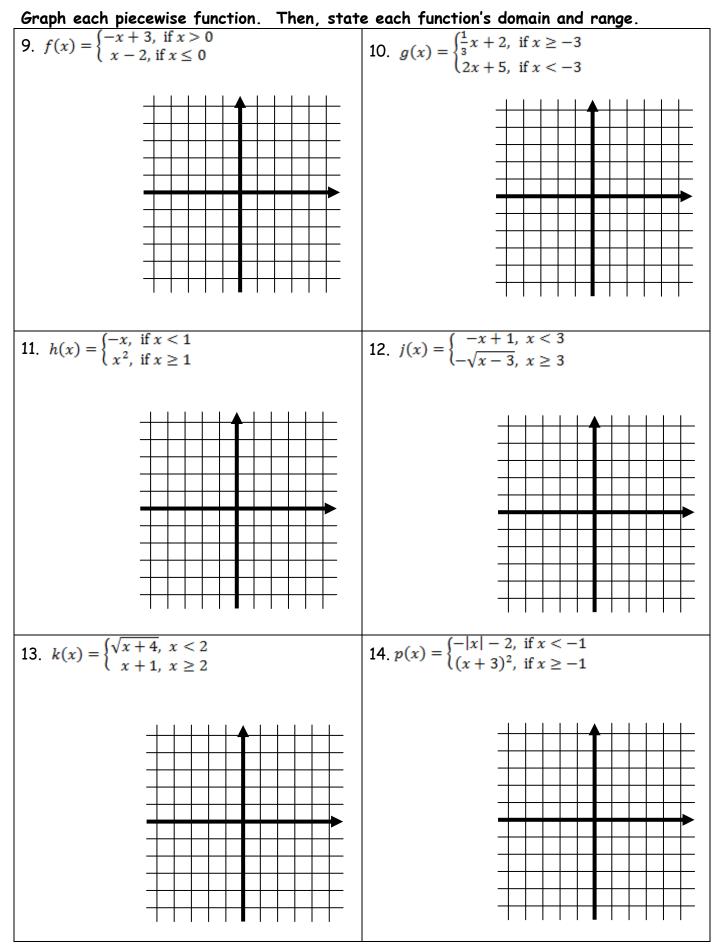
WS - Piecewise Functions

Evaluate each of the following for the given function: $f(x) = \begin{cases} 70, & \text{if } -50 < x \le -10 \\ x^2 - 9, & \text{if } -10 < x \le 0 \\ 3x - 8, & \text{if } 0 < x \le 50 \end{cases}$

- 1. f(-20) 2. f(100) 3. f(30) 4. f(0)
- 5. What is the domain of f(x)?
- 6. What is the range of f(x)?

Each piece of the piecewise function is graphed with a dashed line without taking the domain description into account. Use the domain description to determine the location and type of endpoints and to make the final/complete graph of the piecewise function.





Objective: Students will be able to write interval notation, identify even and odd functions algebraically, and determine where a function is increasing, decreasing or constant

Notes: Interval Notation (domain and range) And Properties of Functions

Interval Notation is a short way to describe all real numbers between two values.

Think about all of the real numbers between -3 and 4.

Graph 1 -6 -4 -2 0 2 4 6	Graph 2	
Set-builder Notation:	Interval Notation:	
-3 < x < 4	(-3, 4)	

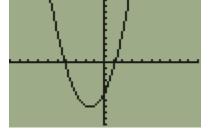
Now, think about all of the real numbers between -6 and 2, including -6 and 2.

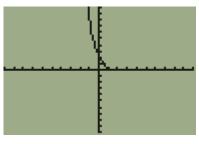
Graph 1 $-6 -4 -2 0 2 4 6$	Graph 2 -6 -4 -2 0 2 4 6
Set-builder Notation:	Interval Notation:
-6 <u>< x <</u> 2	[-6, 2]

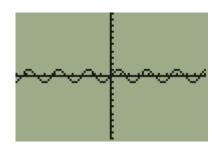
Use interval notation to describe each statement.

 1. all of the real numbers between 5 and 12
 2. all of the real numbers between -3 and 11, including -3 and 11
 3. all of the real numbers between 50 and infinity
 4. all of the real numbers between 17 and infinity, including 17
 5. all positive real numbers
 6. all real numbers between negative infinity and 2
 7. all real numbers between negative infinity and 12 including 12
 8. all negative real numbers

Identify the domain and range of the following graphs. Write your answers in interval notation.







Page 5 of 17

Even and Odd Functions: A function is...

- even if, for every x in the domain, -x is also in the domain and f(-x) = f(x)
- odd if, for every x in the domain, -x is also in the domain and f(-x) = -f(x)

★Even functions have *y-axis* symmetry, and **odd** functions have *origin* symmetry.

Ex 1 Determine if t	he following	functions are	even odd	or <i>neither</i>
	ne jonowing	junctions are	even, ouu	

a) $f(x) = x^3 - 2$ b) $g(x) = x^2 + 3$			
a) $f(x) = x^3 - 2$	b) $g(x) = x^2 + 3$		
c) h(x) = x	d) $F(x) = 4x^3 - x$		
	(x) = (x) = 1		

Increasing or Decreasing: Functions can increase, decrease or remain constant.

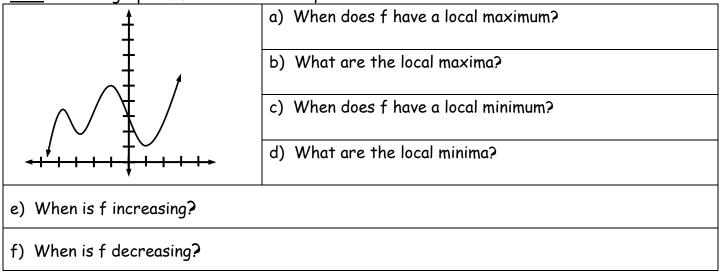
- A function is increasing on an open interval I if, for any choice of x1 and x2 in I, with x1 < x2, f(x1) < f(x2).
- A function is decreasing on an open interval I if, for any choice of x1 and x2 in I, with x1 < x2, f(x1) > f(x2).
- A function is **constant** on an open interval *I* if, for all choices of x in *I*, the values of f(x) are equal.

Increasing	1	Decreasing	İ	Constant	Î
	↓ →	◄,	↓ →		↓ →

Local Maximums and Local Minimums: Bumps or dips in the graph of a function

- A function f has a local maximum at c if there is an open interval I containing c so that, for all x ≠ c in I, f(c) > f(x). We call f(c) a local maximum.
- A function f has a local minimum at c if there is an open interval I containing c so that, for all x ≠ c in I, f(c) < f(x). We call f(c) a local minimum.

Ex 2 Use the graph of f to answer each question.



Average Rate of Change:

If c is in the domain of f, the average rate of change from c to x is...

$\Delta y = \frac{f(x) - f(c)}{x \neq c}, x \neq c$	• It's essentially <i>slope</i> .
$\Delta x \qquad x-c$	 It's called the <i>difference quotient</i> in calculus.

* The average rate of change of a function equals *the slope of the secant line* containing two points on its graph.

<u>Ex 3</u> Given $f(x) = x^2 - 5...$

a) find the average rate of change from 1 to 2	b) find the average rate of change from 1 to x	c) find the equation of the secant line containing (1, f(1)) and (3, f(3))

Worksheet 2.1 Functions

Complete the table below.

Graph	Interval Notation	Set Notation
1a)	1b)	1c)
-6 -4 -2 0 2 4 6		
2a)	2b)	2c)
-6 -4 -2 0 2 4 6	· (-∞, 2) U [4, 7)	

Determine whether the equation is a function.

3. $y = \frac{1}{-}$	4. $y^2 = 4 - x^2$	5. $y = x + 3$
x		

Given $f(x) = \frac{x^2 - 1}{x + 4}$, find the following values or expressions.

$\lambda \pm 4$	7 (1)		0 (1)
6. <i>f</i> (0)	7. <i>f</i> (1)		8. <i>f</i> (-1)
		10 (1)	
9. $f(-x)$		10. $-f(x)$	
11. $f(2x)$		12. $f(x+1)$	

13. If $f(x) = 3x^2 + 2x - 4$, evaluate $\frac{f(x+h) - f(x)}{h}$.

Find the domain of each function.

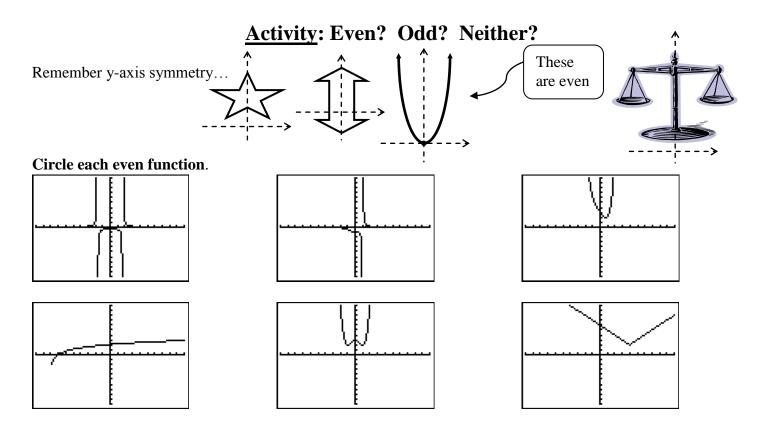
14. $f(x) = \sqrt{3x - 12}$	15. $g(x) = \frac{x}{x^2 - 16}$	16. $h(x) = \frac{x}{x^2 + 1}$

Given f(x) = 3x + 4 and g(x) = 2x - 3, find the following. Also, state the domain of the result.

17. $f - g$	18. $f \cdot g$	19. $\frac{f}{-}$
		8
Domain:	Domain:	Domain:

If a rock falls from a height of 20 meters on Earth, the height *H* (in meters) after *x* seconds is approximately $H(x) = 20 - 4.9x^2$.

approximately $\Pi(x) = 20$ 4.7x	•	
20. What is the height of the	21. When is the height of the	22. When does the rock strike
rock when $x = 1.3$ seconds?	rock 10 meters?	the ground?



Summary: All even functions ...

Algebraic test for y-axis symmetry is...

- 1. substitute in –x
- 2. simplify
- 3. get the original function after simplifying

Box all of the even functions.

 $f(x) = x^3 - x^2 + 2$

Example:

$$f(x) = x^2 - 5$$
 is even because...
 $f(-x) = (-x)^2 - 5$
 $f(-x) = (-x)(-x) - 5$
 $f(-x) = x^2 - 5$
This is the same as the original!

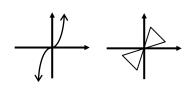
h(x) = |x| - 8

$$g(x) = x^4 - 3x^2 + 5$$

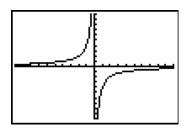
$$j(x) = \sqrt{x} + 4$$

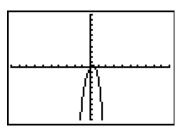
$$m(x) = \frac{2}{x} \qquad \qquad n(x) = \frac{1}{x^2 - 7}$$

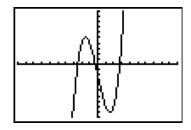
Remember origin symmetry...

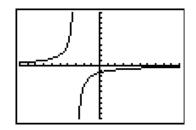


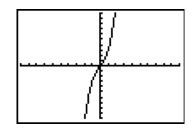
Circle each odd function.

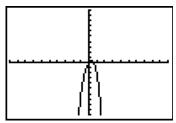






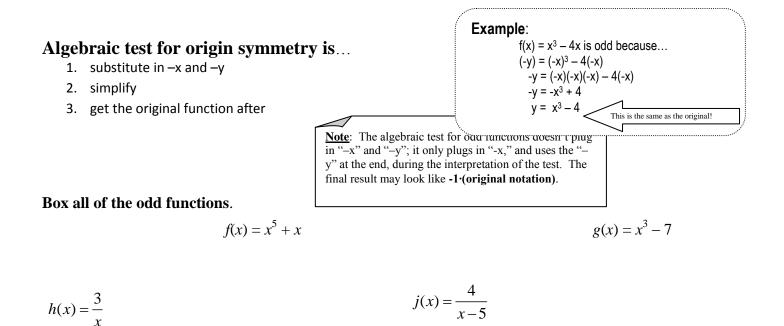






 $n(x) = \sqrt[3]{x}$

Summary: All odd functions ...



 $m(x) = \sqrt{x}$

Objective: Students will be able to find a composite function and give the domain and range

Notes: Composite Functions

Composite Function: Substituting one function into another

- Notation: (f ∘ g)(x) = f((g(x)))
- The domain of $f \circ g$ is the set of all numbers x in the domain of g such that g(x) is in the domain of f.
 - 1. g(x) must be defined so that any x not in the domain of g must be excluded.
 - 2. f(g(x)) must be defined so that any x for which g(x) is not in the domain of f is excluded.
- Work from the right to the left for composition notation or inside to the outside for function notation.

 $\underline{Ex 1}$ Evaluate each expression using the values given in the table.

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	
f(x) 6 3 0 -3 -6 -9 -12 b) (g \circ f)	(0)

<u>Ex 2</u> Evaluate if $f(x) = 5x^2 - 4$ and g(x) = 3x

a) (f o g)(1)	b) (g ∘ f)(2)	c) (f \circ f)(-1)	d) (g _° g)(4)

<u>Ex 3</u> Suppose $f(x) = x^2 - 3x + 8$ and g(x) = 2x + 1. Find the following composite functions. State the domain of each composite function.

a) (f ∘ g)(×)	b) (g ∘ f)(x)

Ex 4 If
$$f(x) = \frac{1}{x+5}$$
 and $g(x) = \frac{6}{x-2}$, find the domain of $(f \circ g)(x)$.

Domain of (f \circ g)(x) is _____

Try: Find the domain of $(f \circ g)(x)$ for the functions below.

1. $f(x) = \frac{4}{x+7}$ and $g(x) = \frac{3}{x-8}$	2. $f(x) = \frac{1}{3x-4}$ and $g(x) = \frac{2}{x^2-9}$

<u>Ex 5</u> If $f(x) = \frac{1}{x+5}$ and $g(x) = \frac{6}{x-2}$, find the following compositions and their domains.

<i>λ</i> 1	J X L		
a) (f ∘ g)(x)		b) (g ₀ g)(x)	
(f ∘ g)(x) =	Domain:	(g ∘ g)(×) =	Domain:

Objective: Students will be able to find an inverse, and verify if a function is one to one, both graphically and algebraically

Notes: Inverse Functions

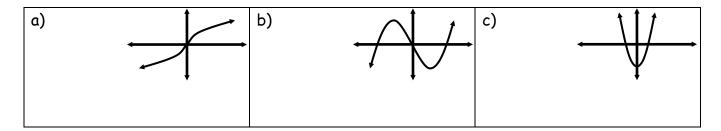
Inverse Functions: two functions that 'cancel' each other out

- Notation: **f**⁻¹ or **f**⁻¹(x)
- Switch x's and y's
- Domain of $f(x) = Range of f^{-1}(x)$ and Domain $f^{-1}(x) = Range of f(x)$
- The composition of f and its inverse is x. $f(f^{-1}(x)) = x$ and $f^{-1}(f(x)) = x$
- A function and its inverse are symmetric with respect to the line y = x
- A one-to-one function is a function in which different inputs never correspond to the same output. The inverse of a one-to-one function will be a function. We must restrict some domains in order for some functions' inverses to be functions.
- Vertical-line Test A set of points in the x-plane is the graph of a function if and only if every vertical line intersects the graph in at most one point.
- The **horizontal line test** gives information about the graph of the inverse of a function. If a horizontal line passes through the graph of a function in at most **one** point, then the function is one-to-one. (Implication: The inverse of the function will be a function.)

 $\underline{Ex 1}$ Find the inverse of the functions below. Identify if the functions are one-to-one.

a) {(-2, 5), (-1, 2), (0, 1), (1, 2), (2, 5)}	b) {(-2, -11), (-1, -4), (0, -3), (1, -2), (2, 5)}
Inverse:	Inverse:
One-to-one?	One-to-one?

 $\underline{Ex 2}$ Analyze the following graphs to determine if the inverses will be functions.



Proving two functions are inverses of one another

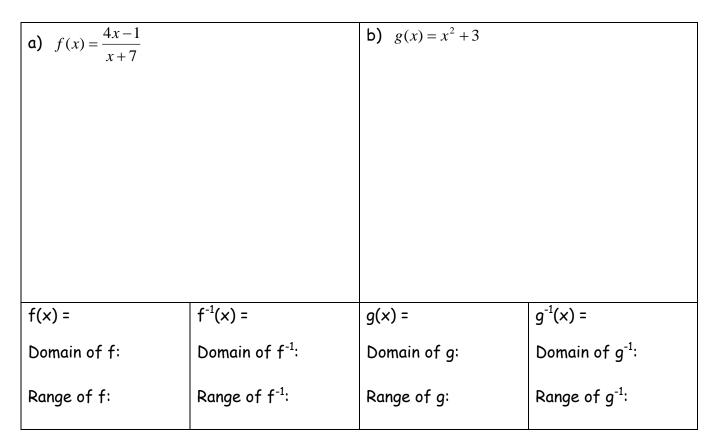
- 1. Show that f(g(x))=x
- 2. Show that g(f(x)) = x
- 3. Write a sentence that justifies your conclusion

<u>Ex 3</u> Prove that f(x) = 2x - 5 and $g(x) = \frac{1}{2}(x + 5)$ are inverses of each other by showing that f(g(x)) = x and the g(f(x)) = x.

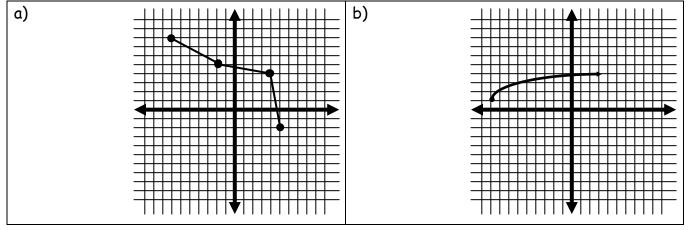
Finding the Inverse of a Function:

- 1. If f is not one-to one, define the domain of f so that f is one-to-one.
- 2. Switch the variables x and y to define f^{-1} implicitly.
- 3. Solve for y if possible to find the explicit form of f^{-1} .
- 4. Verify the result by showing that $f^{-1}(f(x)) = x$ and that $f(f^{-1}(x)) = x$.

 $\underline{Ex 4}$ Find the inverse of the following functions. State the domain and range of the function and its inverse.



 $\underline{Ex 5}$ Graph the inverse of the functions in the graphs below.



Notice: The graphs are symmetric with respect to the line _____