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Objective:  Students will be able to write evaluate piecewise defined functions, graph piecewise defined 

functions, evaluate the domain and range for piecewise defined functions, and solve application problems. 

 

Notes: Piecewise Functions 
 

 

Piecewise-defined Function: a function that is defined differently for different parts of its 

domain.  Pay attention to the domain description when evaluating and graphing. 
 

Ex 1 Evaluate the following when 
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a)  f(-1) b)  f(2) c)  f(4) d)  f(-4) 

 

 

 

Ex 2 Graph the following piecewise-defined functions. 

a)  
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Ex 3 An economy car rented in Florida from National Car Rental® on a weekly basis costs $95 

per week.  Extra days cost $24 per day until the day rate exceeds the weekly rate, in which 

case the weekly rate applies.  Find the cost C of renting an economy car as a piecewise function 

of the number x days used, where 7 < x < 14.  (Note:  Any part of a day counts as a full day.) 

 

 

 
 

 
 
 
 

 
 
 
 
 

 
 
 
 

 
 
 
 
 

 
 
 
 

 
 
 
 
 

 
 
 
 

 
 
 
 

 
 
 
 
 

 
 
 
 

 
 
 
 
 

 
 
 
 

 
 
 
 
 

 
 
 
 

 
 
 
 

 
 
 
 
 

 
 
 
 

 
 
 
 
 

 
 
 
 

 
 
 
 
 

 
 
 
 

 
 
 
 

 
 
 
 
 

 
 
 
 

 
 
 
 
 

 
 
 
 

 
 
 
 

 
 
 
 
 

 
 
 
 

 
 
 
 
 

 
 
 
 

 
 
 
 
 

 
 
 
 

 
 
 
 

 
 
 
 
 

 
 
 
 

 
 
 
 
 

 
 
 
 

 
 
 
 
 

 
 
 
 

 
 
 
 

 
 
 
 
 

 
 
 
 

 
 
 
 
 

 
 
 
 

 
 
 
 
 

 
 
 
 

 
 
 
 

 

You’ve Got Problems! Page 88 9-16, 

29-38, 41, 43 
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WS - Piecewise Functions 
 

Evaluate each of the following for the given function: 2

70, 50 10

( ) 9, 10 0

3 8 , 0 50

if x

f x x if x

x if x

   


    
   

    

 

1.  f(-20) 2.  f(100) 3. f(30) 4.  f(0) 

 

 

 

 

5.  What is the domain of f(x)? 

 

6. What is the range of f(x)? 

 

 

Each piece of the piecewise function is graphed with a dashed line without taking the domain 

description into account.  Use the domain description to determine the location and type of 

endpoints and to make the final/complete graph of the piecewise function. 

7.    
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Graph each piecewise function.  Then, state each function’s domain and range. 

9.   
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11.   
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Objective:  Students will be able to write interval notation, identify even and odd functions algebraically, and 

determine where a function is increasing, decreasing or constant 

Notes: Interval Notation (domain and range) 

And Properties of Functions 
  

 

Interval Notation is a short way to describe all real numbers between two values.   
 

Think about all of the real numbers between -3 and 4. 

Graph 1 

 

Graph 2 

Set-builder Notation: 

-3 < x < 4 

Interval Notation: 

(-3, 4) 
 

Now, think about all of the real numbers between -6 and 2, including -6 and 2. 

 Graph 1 

 

Graph 2 

Set-builder Notation: 

-6 < x < 2 

Interval Notation: 

[-6, 2] 

 

Use interval notation to describe each statement. 

_________________  1.  all of the real numbers between 5 and 12 

_________________  2.  all of the real numbers between -3 and 11, including -3 and 11 

_________________  3.  all of the real numbers between 50 and infinity 

_________________  4.  all of the real numbers between 17 and infinity, including 17 

_________________  5.  all positive real numbers 

_________________  6.  all real numbers between negative infinity and 2 

_________________  7.  all real numbers between negative infinity and 12 including 12 

_________________  8.  all negative real numbers 
 

Identify the domain and range of the following graphs.  Write your answers in interval notation. 

                             
 

 

 

 

 

 

 

0 2 6 4 -6 -4 -2 0 2 6 4 -6 -4 -2 

0 2 6 4 -6 -4 -2 0 2 6 4 -6 -4 -2 
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Even and Odd Functions:  A function is… 

 even if, for every x in the domain, –x is also in the domain and f(-x) = f(x) 

 odd if, for every x in the domain, -x is also in the domain and f(-x) = -f(x) 
 

Even functions have y-axis symmetry, and odd functions have origin symmetry. 
  

 

Ex 1 Determine if the following functions are even, odd, or neither. 

a)  f(x) = x3 – 2  

 

 

 

 

 

 

 

 

 

 

 

b)  g(x) = x2 + 3 

c)  h(x) = |x| 

 

 

 

 

 

 

 

 

 

 

 

 

d)  F(x) = 4x3 – x  

 

Increasing or Decreasing:  Functions can increase, decrease or remain constant. 

 A function is increasing on an open interval I if, for any choice of x1 and x2 in I,  

with   x1 < x2, f(x1) < f(x2). 
 A function is decreasing on an open interval I if, for any choice of x1 and x2 in I,  

with x1 < x2, f(x1) > f(x2). 
 A function is constant on an open interval I if, for all choices of x in I,  

the values of f(x) are equal. 
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Increasing Decreasing Constant 

 
 

 

Local Maximums and Local Minimums:  Bumps or dips in the 

graph of a function 

 A function f has a local maximum at c if there is an open 

interval I containing c so that, for all x ≠ c in I, f(c) > f(x).  

We call f(c) a local maximum. 

 A function f has a local minimum at c if there is an open 

interval I containing c so that, for all x ≠ c in I, f(c) < f(x).  

We call f(c) a local minimum. 
 

Ex 2 Use the graph of f to answer each question. 

 a)  When does f have a local maximum? 

 

b)  What are the local maxima? 

 

c)  When does f have a local minimum? 

 

d)  What are the local minima? 

 

e)  When is f increasing? 

f)  When is f decreasing? 
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Average Rate of Change:   
If c is in the domain of f, the average rate of change from c to x is… 

 

cx
cx

cfxf
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,

)()(
  It’s essentially slope.   

 It’s called the difference quotient in calculus. 

 

  The average rate of change of a function equals the slope of the secant line containing two 

points on its graph. 
 

Ex 3 Given f(x) = x2 – 5… 

 

a)  find the average rate 

of change from 1 to 2 

b)  find the average rate 

of change from 1 to x 

c)  find the equation of the secant 

line containing (1, f(1)) and (3, f(3)) 
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Worksheet 2.1 

Functions 
 

Complete the table below. 

Graph Interval Notation Set Notation 

1a) 

 

 

 

1b) 1c) 

2a) 

 

 

 

2b) 

 

        (-∞, 2) U [4, 7) 

2c) 

 

Determine whether the equation is a function. 

3.  
x

y
1

  
4.  y

2
 = 4 – x

2
  5.  y = |x| + 3 

 

 

 

 

 
 

Given 
4

1
)(
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x

x
xf , find the following values or expressions. 

6.  f(0) 

 

 

 

 

 

7.  f(1) 8.  f(-1) 

9.  f(-x) 

 

 

 

 

 

 

10.  –f(x) 

11.  f(2x) 

 

 

 

 

 

 

 

 

 

 

12.  f(x + 1) 

0 2 6 4 -6 -4 -2 

0 2 6 4 -6 -4 -2 
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13.  If f(x) = 3x
2
 + 2x – 4, evaluate 

h

xfhxf )()( 
. 

 

 

 

 

 

 

 

 

 

 
 

Find the domain of each function. 

14.  123)(  xxf  
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Given  f(x) = 3x + 4 and g(x) = 2x – 3, find the following.  Also, state the domain of the result. 

17.  f – g  

 

 

 

 

 

 

 

 

 

 

Domain: 

18.  f ∙ g 

 

 

 

 

 

 

 

 

 

 

Domain: 

19.  
g

f
 

 

 

 

 

 

 

 

 
Domain: 

 

If a rock falls from a height of 20 meters on Earth, the height H (in meters) after x seconds is 

approximately H(x) = 20 – 4.9x
2
. 

20.  What is the height of the 

rock when x = 1.3 seconds? 

 

 

 

 

 

 

 

21.  When is the height of the 

rock 10 meters? 

22.  When does the rock strike 

the ground? 

 

 



Page 11 of 17 

 

 

Activity: Even?  Odd?  Neither? 
 

Remember y-axis symmetry… 

 

 

 

 

Circle each even function. 

   
   

   
 

Summary:  All even functions … 

 

 

 

Algebraic test for y-axis symmetry is… 
1. substitute in –x 

2. simplify 

3. get the original function after simplifying 

 

 

Box all of the even functions. 

3 2( ) 2f x x x     ( ) 8h x x    

 4 2( ) 3 5g x x x     ( ) 4j x x   

2
( )m x

x
  

 
2

1
( )

7
n x

x



 

 

 

These 

are even 

Example:   
f(x) = x2 – 5 is even because… 
f(-x) = (-x)2 – 5  
f(-x) = (-x)(-x) – 5  

f(-x) = x2 – 5  
This is the same as the original! 
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Note:  The algebraic test for odd functions doesn’t plug 

in “–x” and “–y”; it only plugs in “-x,” and uses the “–

y” at the end, during the interpretation of the test.  The 

final result may look like -1∙(original notation). 

 

 

Remember origin symmetry… 

 

 

Circle each odd function. 

   
   

   
 

Summary:  All odd functions … 

 

 

 

 

Algebraic test for origin symmetry is… 
1. substitute in –x and –y  

2. simplify 

3. get the original function after simplifying 

 

 

 

 

Box all of the odd functions. 

 f(x) = x
5
 + x   g(x) = x

3
 – 7  

 
3

( )h x
x

  

 4
( )

5
j x

x



 

 

 ( )m x x  

 

 3( )n x x  

 

 

 

 

 

 

Example:   
f(x) = x3 – 4x is odd because… 
(-y) = (-x)3 – 4(-x)  
   -y = (-x)(-x)(-x) – 4(-x)  
   -y = -x3 + 4  

    y =  x3 – 4  
This is the same as the original! 
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Objective:  Students will be able to find a composite function and give the domain and range 

 

Notes: Composite Functions 
 

Composite Function:  Substituting one function into another 

 Notation:  (f ◦ g)(x) = f((g(x)) 

 The domain of f ◦ g is the set of all numbers x in the domain of g such that g(x) is in the 

domain of f. 

1. g(x) must be defined so that any x not in the domain of g must be excluded. 

2. f(g(x)) must be defined so that any x for which g(x) is not in the domain of f is 

excluded. 

 Work from the right to the left for composition notation or inside to the outside for 

function notation. 
 

Ex 1  Evaluate each expression using the values given in the table. 

x -3 -2 -1 0 1 2 3 

f(x) 6 3 0 -3 -6 -9 -12 

g(x) -6 -2 -1 2 -1 -2 -6 

 

Ex 2  Evaluate if f(x) = 5x2 – 4 and g(x) = 3x 

a)  (f ◦ g)(1) 

 

 

 

 

 

 

b)  (g ◦ f)(2) c)  (f ◦ f)(-1) d)  (g ◦ g)(4) 

 

Ex 3 Suppose f(x) = x2 – 3x + 8 and g(x) = 2x + 1.  Find the following composite functions.  State 

the domain of each composite function. 

a)  (f ◦ g)(x) b)  (g ◦ f)(x) 

 

 

 

 

 

 

 

 

 

 

a)  (f ◦ g)(0) =        

b)  (g ◦ f)(-1) =      

c)  (f ◦ f)(-2) = 



Page 14 of 17 

 

Ex 4  If 
5
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x
xg , find the domain of (f ◦ g)(x). 

 

 

 

 

 

 

 
Domain of (f ◦ g)(x) is _____________________________________. 
 

Try:  Find the domain of (f ◦ g)(x) for the functions below. 
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Ex 5  If 
5
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x
xg , find the following compositions and their domains. 

a)  (f ◦ g)(x) 

 

 

 

 

 

 

 

 

 

 
(f ◦ g)(x) = _________Domain:________ 

b)  (g ◦ g)(x) 

 

 

 

 

 

 

 

 

 

 
(g ◦ g)(x) = _________Domain:________ 
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Objective:  Students will be able to find an inverse, and verify if a function is one to one, both graphically and 

algebraically   

Notes: Inverse Functions 
Inverse Functions:  two functions that ‘cancel’ each other out 

 Notation:  f-1 or f-1(x) 

 Switch x’s and y’s 

 Domain of f(x) = Range of f-1(x) and Domain f-1(x) = Range of f(x) 

 The composition of f and its inverse is x.  1( )f f x x   and  1 ( )f f x x   

 A function and its inverse are symmetric with respect to the line y = x 

 A one-to-one function is a function in which different inputs never correspond to the 

same output.  The inverse of a one-to-one function will be a function.  We must restrict 
some domains in order for some functions’ inverses to be functions. 

 Vertical-line Test – A set of points in the x-plane is the graph of a function if and only if 

every vertical line intersects the graph in at most one point. 

 The horizontal line test gives information about the graph of the inverse of a function.  

If a horizontal line passes through the graph of a function in at most one point, then the 

function is one-to-one.  (Implication:  The inverse of the function will be a function.) 

 

Ex 1  Find the inverse of the functions below.  Identify if the functions are one-to-one. 

 

a)  {(-2, 5), (-1, 2), (0, 1), (1, 2), (2, 5)} 

 

Inverse: 

 

One-to-one? 

b)  {(-2, -11), (-1, -4), (0, -3), (1, -2), (2, 5)} 

 

Inverse: 

 

One-to-one? 

 

Ex 2  Analyze the following graphs to determine if the inverses will be functions. 

 

a) b) c) 
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Proving two functions are inverses of one another 

1. Show that f(g(x))=x 

2. Show that g(f(x)) = x 

3. Write a sentence that justifies your conclusion 

 

 

Ex 3  Prove that f(x) = 2x – 5 and g(x) = ½(x + 5) are inverses of each other by showing that 

f(g(x)) = x and the g(f(x)) = x. 
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Finding the Inverse of a Function: 

1. If f is not one-to one, define the domain of f so that f is one-to-one. 

2. Switch the variables x and y to define f-1 implicitly. 

3. Solve for y if possible to find the explicit form of f-1. 

4. Verify the result by showing that f-1(f(x)) = x and that f(f-1(x)) = x. 
 

Ex 4  Find the inverse of the following functions.  State the domain and range of the function 

and its inverse. 

 

a)  
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x
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b)  3)( 2  xxg  

f(x) = 
 

Domain of f: 

 

Range of f: 

 

f-1(x) = 
 

Domain of f-1: 

 

Range of f-1: 

 

g(x) = 
 

Domain of g: 

 

Range of g: 

 

g-1(x) =  
 

Domain of g-1: 

 

Range of g-1: 

 

 

Ex 5  Graph the inverse of the functions in the graphs below. 

a) 

 

 

 

 

 

 

 

 

 

b) 

 

Notice:  The graphs are symmetric with respect to the line _______. 
 
 
 


